Perancangan Tata Letak Toko Ritel Berdasarkan Pola Belanja Konsumen Dengan Market Basket Analysis (Studi Kasus: Indomaret Sukatani)

Nadiya Hasna Fakhirah Hartanto, Budi Aribowo

Abstract


During the pandemic in early 2020, consumer behavior in shopping at retail stores changed. Some of the main factors taken into consideration that can influence consumer shopping behavior are facilities, layout, and time spent shopping. This can affect product sales at Indomaret Sukatani which has an ineffective layout so that it is difficult for customers to reach and customers need to spend a long-time shopping. To solve these problems, it is necessary to do data mining using the Market Basket Analysis method with the Apriorist and FP-Growth Algorithm so that customer shopping patterns can be known in order to design new layouts. Then the effectiveness test can be done by calculating the rectilinear distance to find out the most optimal layout design, namely the layout design based on the FP-Growth Algorithm with the smallest total rectilinear distance value of 2353.5 in the first scenario, 2313 in the second scenario, and 1609.5 in the third scenario.

KeywordsCustomer Behaviour, Layout, Market Basket Analysis


Full Text:

PDF

References


J. Sheth, “Impact of Covid-19 on consumer behavior: Will the old habits return or die,” Journal of Business Research, vol. 117, pp. 280-283, 2020.

S. Laato, A. K. M. N. Islam, A. Farooq, A. Dhir, “Unusual purchasing behavior during the early stages of the COVID-19 pandemic: The stimulus organism response approach,” Journal of Retailing and Consumer Services, vol. 57, pp. 2-12, 2020.

P. Brandtner, F. Darbanian, T. Falatouri, C. Udokwu, “Impact of COVID-19 on the Customer End of Retail Supply Chains: A Big Data Analysis of Consumer Satisfaction,” Journal MDPI, vol. 3, no. 13, pp. 1-18, 2021.

W. Hartanto, K. Sulistyadi, H. Sawiji, “Pengembangan Sistem Manajemen Metode Data Mining Market Basket Analysis untuk Menentukan Pola Tata Letak Produk,” Jurnal Pendidikan Insan Mandiri, vol. 1, no. 2, pp. 264-270, 2015.

E. D Aprilia, R. Septila, “Impulse Buying pada Mahasiswa di Banda Aceh,” Jurnal Psikoislamedia, vol. 2, no. 2, pp. 170-183, 2017.

I. Alwi, “Kriteria Empirik dalam Menentukan Ukuran Sampel pada Pengujian Hipotesis Statistika dan Analisis Butir,” Jurnal Formatif, vol. 2, no. 2, pp. 140-148, 2017.

D. Sepri, M. Afdal, “Analisa dan Perbandingan Metode Algoritma Apriori dan FP_Growth untuk Mencari Pola Daerah Strategis Pengenalan Kampus Studi Kasus di STKIP ADZKIA Padang,” Jurnal Sistem Informasi Kaputama, vol. 1, no. 1, pp. 47-55, 2017.

F. Kurniawan, B. Umayah, J. Hammad, “Market Basket Analysis to Identify Customer Behaviors by Way of Transaction Data,” Journal of Knowledge Engineering and Data Science, vol. 1, no. 1, pp. 20-25, 2018.

Y. Mardi, “Data Mining: Klasifikasi Menggunakan Algoritma C4.5,” Jurnal Edik Informatika, vol. 2, no. 2, pp. 213-219, 2017.

E. Yulianto, H. Heryanto, “Redesain Tata Letak Produk di Supermarket Berdasarkan Perilaku Pembelian dengan Metode Market Basket Analysis,” Jurnal Media Informatika, vol. 18, no. 1, pp. 19-36, 2019.




DOI: http://dx.doi.org/10.36722/sst.v8i2.1375

Refbacks

  • There are currently no refbacks.


LP2M (Lembaga Penelitian dan Pengembangan Masyarakat)

Universitas AL-AZHAR INDONESIA, Lt.2 Ruang 207

Kompleks Masjid Agung Al Azhar

Jl. Sisingamangaraja, Kebayoran Baru

Jakarta Selatan 12110

Visitor

 This work is licensed under CC BY 4.0