An EfficientNetV2-Based for Alzheimer’s Disease Classification
Abstract
In Indonesia, Alzheimer’s disease has emerged as a critical public health priority. This neurodegenerative disorder is characterized by the gradual erosion of memory, linguistic capabilities, and problem-solving skills resulting from irreversible neuronal damage. Magnetic Resonance Imaging (MRI) is commonly used for early diagnosis; however, manual interpretation of MRI scans is time-consuming and subject to inter-observer variability among medical professionals. Recent advances in artificial intelligence have enabled automated analysis of MRI images for Alzheimer’s disease detection, yet many existing approaches rely on deep learning architectures with high computational complexity. To address this limitation, this study proposes a lightweight deep convolutional network based on EfficientNetV2 for Alzheimer’s disease classification using brain MRI images. Data augmentation techniques, including random rotation, affine transformation, horizontal and vertical flipping and normalization are applied to enhance model generalization. Two EfficientNetV2 variants, EfficientNetV2_s and EfficientNetV2_m, are evaluated and compared using accuracy, precision, recall, and F1-score metrics. Experimental results demonstrate that EfficientNetV2_s achieves superior performance, attaining an accuracy, precision, recall, and F1-score of approximately 0.90, while EfficientNetV2_m achieves corresponding values of approximately 0.81, indicating lower generalization capability. These results confirm that the smaller EfficientNetV2_s model provides more accurate and reliable classification performance despite its reduced computational complexity.
Keywords - Alzheimer’s Disease, Classification, Convolutional Neural Networks, Deep Learning.
Full Text:
PDFReferences
A. G. M. Sianturi, “Stadium, Diagnosis, dan Tatalaksana Penyakit Alzheimer: Stages, Diagnosis, and Management of Alzheimer’s Disease,” Majalah Kesehatan Indonesia, vol. 2, no. 2, pp. 39–44, Oct. 2021, doi: 10.47679/makein.202132.
J. L. Cummings and G. Cole, “Alzheimer Disease,” JAMA, vol. 287, no. 18, pp. 2335–2338, May 2002, doi: 10.1001/jama.287.18.2335.
A. Arfina, “Pengaruh Edukasi terhadap Pengetahuan Masyarakat Tentang Deteksi Dini Alzheimer di Kelurahan Labuh Baru Pekanbaru,” Health Care: Jurnal Kesehatan, vol. 10, no. 2, pp. 256–261, 2021. https://doi.org/10.36763/healthcare.v10i2.170.
G. B. Frisoni, N. C. Fox, C. R. Jack, P. Scheltens, and P. M. Thompson, “The clinical use of structural MRI in Alzheimer disease,” Nat Rev Neurol, vol. 6, no. 2, pp. 67–77, 2010, doi: 10.1038/nrneurol.2009.215.
C. Ferrari and S. Sorbi, “The complexity of Alzheimer’s disease: an evolving puzzle,” Physiol Rev, vol. 101, no. 3, pp. 1047–1081, Jan. 2021, doi: 10.1152/physrev.00015.2020.
K. Yadav and K. Miyapuram, “A Novel Approach Towards Early Detection of Alzheimer’s Disease Using Deep Learning on Magnetic Resonance Images,” 2021, pp. 486–495. doi: 10.1007/978-3-030-86993-9_43.
P. R. Buvaneswari and R. Gayathri, “Deep Learning-Based Segmentation in Classification of Alzheimer’s Disease,” Arab J Sci Eng, vol. 46, no. 6, pp. 5373–5383, 2021, doi: 10.1007/s13369-020-05193-z.
P. Baglat, A. W. Salehi, A. Gupta, and G. Gupta, “Multiple Machine Learning Models for Detection of Alzheimer’s Disease Using OASIS Dataset,” in Re-imagining Diffusion and Adoption of Information Technology and Systems: A Continuing Conversation, S. K. Sharma, Y. K. Dwivedi, B. Metri, and N. P. Rana, Eds., Cham: Springer International Publishing, 2020, pp. 614–622. https://link.springer.com/book/10.1007/978-3-030-64861-9.
A. M. El-Assy, H. M. Amer, H. M. Ibrahim, and M. A. Mohamed, “A novel CNN architecture for accurate early detection and classification of Alzheimer’s disease using MRI data,” Sci Rep, vol. 14, no. 1, p. 3463, 2024, doi: 10.1038/s41598-024-53733-6.
“Klasifikasi Penyakit Alzheimer Dari Scan Mri Otak Menggunakan Convnext,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 6, pp. 1223–1232, Dec. 2024, doi: 10.25126/jtiik.2024118117.
H.-I. Liu et al., “Lightweight deep learning for resource-constrained environments: A survey,” ACM Comput Surv, vol. 56, no. 10, pp. 1–42, 2024. https://doi.org/10.48550/arXiv.2404.07236.
T. Shahriar, “Comparative Analysis of Lightweight Deep Learning Models for Memory-Constrained Devices,” arXiv preprint arXiv:2505.03303, 2025.
https://doi.org/10.48550/arXiv.2505.03303.
E. E. Citra, D. H. Fudholi, and C. K. Dewa, “Implementasi Arsitektur EfficientNetV2 Untuk Klasifikasi Gambar Makanan Tradisional Indonesia,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 2, pp. 766–777, 2023. DOI: https://doi.org/10.30865/mib.v7i2.5881.
A. H. Nurfauzi, Y. Azhar, and D. R. Chandranegara, “Penerapan Model EfficientNetV2-B0 pada Benchmark IP102 Dataset untuk Menyelesaikan Masalah Klasifikasi Hama Serangga,” Jurnal Repositor, vol. 5, no. 3, 2023. DOI: https://doi.org/10.22219/repositor.v5i3.32075.
M. A. Mutasodirin and F. M. Falakh, “Efficient Weather Classification Using DenseNet and EfficientNet,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 9, no. 2, pp. 173–179, 2024. DOI: https://doi.org/10.30591/jpit.v9i2.7539.
K. Gencer, “A Comparative Analysis of EfficientNetB0 and EfficientNetV2 Variants for Brain Tumor Classification Using MRI Images,” International Journal of Innovative Engineering Applications, vol. 9, no. 1, pp. 1–7, 2025, doi: 10.46460/ijiea.1523782.
M. Al Moteri, T. R. Mahesh, A. Thakur, V. Vinoth Kumar, S. B. Khan, and M. Alojail, “Enhancing accessibility for improved diagnosis with modified EfficientNetV2-S and cyclic learning rate strategy in women with disabilities and breast cancer,” Front Med (Lausanne), vol. Volume 11-2024, 2024, [Online]. Available: https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2024.1373244
M. Tang, H. Y. Ting, A. Atanda, and K. Ting, “Transfer Learning with EfficientNetV2 forDiabetic Retinopathy Detection,” International Journal of Engineering and Manufacturing, vol. 14, pp. 54–60, Dec. 2024, doi: 10.5815/ijem.2024.06.05.
S. G. Mueller et al., “Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI),” Alzheimer’s & Dementia, vol. 1, no. 1, pp. 55–66, 2005. DOI: 10.1016/j.jalz.2005.06.003.
C. R. Jack Jr. et al., “The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods,” Journal of Magnetic Resonance Imaging, vol. 27, no. 4, pp. 685–691, Apr. 2008, doi: https://doi.org/10.1002/jmri.21049.
M. Asaduzzaman, Md. K. Alom, and Md. E. Karim, “ALZENET: Deep learning-based early prediction of Alzheimer’s disease through magnetic resonance imaging analysis,” Telematics and Informatics Reports, vol. 17, p. 100189, 2025, doi: https://doi.org/10.1016/j.teler.2025.100189.
A. A. A. El-Latif, S. A. Chelloug, M. Alabdulhafith, and M. Hammad, “Accurate Detection of Alzheimer’s Disease Using Lightweight Deep Learning Model on MRI Data,” Diagnostics, vol. 13, no. 7, 2023, doi: 10.3390/diagnostics13071216.
M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in International conference on machine learning, PMLR, 2019, pp. 6105–6114.
https://doi.org/10.48550/arXiv.1905.11946.
M. Tan and Q. Le, “Efficientnetv2: Smaller models and faster training,” in International conference on machine learning, PMLR, 2021, pp. 10096–10106.
https://doi.org/10.48550/arXiv.2104.00298.
DOI: http://dx.doi.org/10.36722/sst.v11i1.5311
Refbacks
- There are currently no refbacks.
LP2M (Lembaga Penelitian dan Pengembangan Masyarakat)
Universitas AL-AZHAR INDONESIA, Lt.2 Ruang 207
Kompleks Masjid Agung Al Azhar
Jl. Sisingamangaraja, Kebayoran Baru
Jakarta Selatan 12110
This work is licensed under CC BY 4.0









