Inventory Planning and Control in Perishable Items Products Using the Single Order Quantities Method (Case Study: PT XYZ)

Amelia Tasya Tanuwijaya(1*), Nunung Nurhasanah(2), Wawan Tripiawan(3),


(1) University of Al-Azhar Indonesia
(2) University of Al-Azhar Indonesia
(3) Chung Yuan Christian University
(*) Corresponding Author

Abstract


Effective inventory management is crucial for companies distributing perishable products. PT XYZ requires a precise control method to optimize inventory and minimize losses. This study aims to determine the top 5 priority products, identify the best forecasting method with the smallest error and analyze the implementation of Single Order Quantities (SOQ) in inventory management. Using primary and secondary data collected from 1 January 2021 to 4 April 2022, the study employed ABC Analysis to categorize products, followed by demand forecasting using Single Moving Average, Single Exponential Smoothing, and Fuzzy Time Series to select the most accurate method. Inventory planning was then carried out using SOQ to enhance efficiency. Among 196 vegetable types, 5 were identified as the highest priority: Birdseye Chili Pepper (1 kg), Red Cayenne Pepper (1 kg), Birdseye Chili Pepper (Min. 5 kg), Local Cucumber (1 kg), and Bulk Green Paprika. The SOQ method enabled optimized inventory strategies, ensuring product availability while minimizing excess stock. This research provides practical insights for effective inventory planning, particularly for businesses handling perishable goods.

Keywords - Demand Planning, Fuzzy Time Series, Inventory Planning, Perishable Product, Single Order Quantity.


Full Text:

PDF

References


R. R. M. Panigrahi, T. P. Neelam, P. C. Mishra, and A. J. Arpita, “Does Inventory Contribute to Performance? An Analysis of an Indian Steel Plant,” Int. J. Appl. Syst., vol. 10, no. 4, pp. 329–342, 2023.

R. R. Panigrahi, J. R. Das, D. Jena, and G. Tanty, “Withdrawn,” Int. J. Recent Technol. Eng., vol. 8, no. 4, pp. 3875–3880, 2019.

A. Sahoo, D. Tandon, D. Jena, P. C. Mishra, J. R. Meher, and R. R. Panigrahi, “Inventory Management and Performance of Manufacturing Firms,” Int. J. Value Chain Manag., vol. 12, no. 2, p. 1, 2021.

S. D. Kırmızı, Z. Ceylan, and S. Bulkan, “Enhancing Inventory Management through Safety-Stock Strategies—A Case Study,” Systems, vol. 12, no. 7, pp. 1–17, 2024.

J. N. C. Gonçalves, M. S. Carvalho, and P. Cortez, “Operations research models and methods for safety stock determination: A review,” Oper. Res. Perspect., vol. 7, no. October, p. 100164, 2020.

M. Khokhar, S. Zia, S. A. Khan, S. T. Saleem, A. A. Siddiqui, and M. Abbas, “Decision Support System for Safety Stock and Safety Time Buffers in Multi-Item Single-Stage Industrial Supply Chains,” Int. J. Inf. Syst. Soc. Chang., vol. 14, no. 1, pp. 1–13, 2023.

G. Narkhede and N. Rajhans, “An integrated approach to redesign inventory management strategies for achieving sustainable development of small and medium-sized enterprises: Insights from an empirical study in India,” Bus. Strateg. Dev., vol. 5, no. 4, pp. 308–321, 2022.

G. Narkhede and N. Rajhans, “Optimizing Inventory Carrying Cost Using Rank Order Clustering Approach for Small and Medium Enterprises (SMES),” J. Univ. Shanghai Sci. Technol., vol. 23, no. 1, 2021.

L. Li, O. Tang, W. Zhou, and T. Fan, “Backroom effect on perishable inventory management with IoT information,” Int. J. Prod. Res., vol. 61, no. 12, pp. 4157–4179, 2023.

R. Lhamo and N. Chiadamrong, “Inventory management of perishable products in a retail business: a comparison with and without in-store replenishment policies under different purchasing batch sizes,” Int. J. Logist. Syst. Manag., vol. 26, no. 2, p. 224, 2017.

D. Vlachos and R. Dekker, “Return handling options and order quantities for single period products,” Eur. J. Oper. Res., vol. 151, no. 1, pp. 38–52, 2003.

N. Noviana and R. D. Mudiastuti, “Penggunaan Metode SOQ dalam Penentuan Kuantitas Pemesanan Perishable Product untuk Meminimalkan Return,” J. Eng. Manag. Industial Syst., 2014.

R. J. Tersine, Principles of inventory and materials management, Fourth edi. New Jersey: Prentice-Hall International, 1994.

D. Purnamasari, E. R. Arumi, and A. Primadewi, “Implementasi Metode Single Moving Average Untuk Prediksi Stok Produsen,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 5, p. 1495, 2022.

N. Nurhasanah, C. A. Nurpraja, S. I. P. S. Himawan, and A. Ramadanti, Metode Peramalan Deret Waktu: Teori dan Aplikasinya. KBM Indonesia, 2022.

A. N. Aimran and A. Afthanorhan, “A comparison between single exponential smoothing (SES), double exponential smoothing (DES), holt�s (brown) and adaptive response rate exponential smoothing (ARRES) techniques in forecasting Malaysia population,” Glob. J. Math. Anal., vol. 2, no. 4, p. 276, 2014.

Q. Song and B. S. Chissom, “Forecasting enrollments with fuzzy time series - part II,” Fuzzy Sets Syst., vol. 62, no. 1, pp. 1–8, 1994.

M. Bose and K. Mali, “Designing fuzzy time series forecasting models : A survey,” Int. J. Approx. Reason., vol. 111, pp. 78–99, 2019.

S. M. Chen, “Forecasting enrollments based on fuzzy time series,” Fuzzy sets Syst., vol. 81, pp. 311–319, 1996.

N. Fauziah, S. Wahyuningsih, and Y. N. Nasution, “Peramalan menggunakan fuzzy time series Chen (Studi kasus: Curah hujan Kota Smarinda),” Statistika, vol. 4, no. 2, pp. 52–61, 2016.




DOI: http://dx.doi.org/10.36722/sst.v10i2.4102

Refbacks

  • There are currently no refbacks.


LP2M (Lembaga Penelitian dan Pengembangan Masyarakat)

Universitas AL-AZHAR INDONESIA, Lt.2 Ruang 207

Kompleks Masjid Agung Al Azhar

Jl. Sisingamangaraja, Kebayoran Baru

Jakarta Selatan 12110

Visitor

 This work is licensed under CC BY 4.0