Pengaruh Variasi Jumlah Neuron dalam Hidden Layer Algoritma Pelatihan Levenberg-Marquardt Jaringan Backpropagation: A Systematic Literature Review

Ade Gilang Hendra Irianto(1*), Endah Sudarmilah(2),


(1) Universitas Muhammadiyah Surakarta
(2) Universitas Muhammadiyah Surakarta
(*) Corresponding Author

Abstract


This analysis is done to determine and is a consideration for future research related to different types of problem solving by using the training algorithm of Backpropagation network. This study uses 4 steps selections in filter articles that will be used in literary studies, namely 1) Identification 2) Screening 3) Eligibility and 4) Included. The number of items filtered in this study is 73 articles. The article was filtered through the identification phase with a total of 205 articles, then in the screening process by assimilating the title and summary, then the eligible process with many articles filtered by 132 articles did not meet the requirements to get the final results of 73 articles for the analysis process. The number of nerve cells indicates that there is no rules that are determined related to the exact quantity of nerve cells in the hidden layer depending on all research needs and parameters applied in research. Although in some articles, the accuracy value is not briefly mentioned that the Levenberg-Marquardt training algorithm is effective in solving problems, in 21 articles filtered that the Levenberg- Marquardt training algorithm has an accuracy rate of over 90%, indicating that this algorithm can be an alternative choice as a problem-solving tool due to its effectiveness and optimal accuracy of results.

Keywords - Accuracy, Backpropagation, , Effectiveness, Hidden Layer, Levenberg-Marquardt Algorithm


Full Text:

PDF

References


Z. Khoshraftar and A. Ghaemi, “Prediction of CO2 solubility in water at high pressure and temperature via deep learning and response surface methodology,” Case Studies in Chemical and Environmental Engineering, vol. 7, no. March, p. 100338, 2023, doi: 10.1016/j.cscee.2023.100338.

J. Taghinezhad and S. Sheidaei, “Prediction of operating parameters and output power of ducted wind turbine using artificial neural networks,” Energy Reports, vol. 8, pp. 3085–3095, 2022, doi: 10.1016/j.egyr.2022.02.065.

L. S. de Oliveira, S. B. Gruetzmacher, and J. P. Teixeira, “Covid-19 time series prediction,” Procedia Comput Sci, vol. 181, no. 2019, pp. 973–980, 2021, doi: 10.1016/j.procs.2021.01.254.

E. N. Ghaleini and M. J. Shaibani, “Investigating the effect of vaccinated population on the COVID-19 prediction using FA and ABC-based feed-forward neural networks,” Heliyon, vol. 9, no. 2, p. e13672, 2023, doi: 10.1016/j.heliyon.2023.e13672.

T. Khan, J. Qiu, M. A. A. Qureshi, M. S. Iqbal, R. Mehmood, and W. Hussain, “Agricultural Fruit Prediction Using Deep Neural Networks,” Procedia Comput Sci, vol. 174, no. 2019, pp. 72–78, 2020, doi: 10.1016/j.procs.2020.06.058.

M. Kannaiyan, G. Karthikeyan, and J. G. Thankachi Raghuvaran, “Prediction of specific wear rate for LM25/ZrO2 composites using Levenberg-Marquardt backpropagation algorithm,” Journal of Materials Research and Technology, vol. 9, no. 1, pp. 530–538, 2020, doi: 10.1016/j.jmrt.2019.10.082.

J. S. Goud et al., “Heat transfer analysis in a longitudinal porous trapezoidal fin by non-Fourier heat conduction model: An application of artificial neural network with Levenberg–Marquardt approach,” Case Studies in Thermal Engineering, vol. 49, no. July, p. 103265, 2023, doi: 10.1016/j.csite.2023.103265.

Z. Sabir, R. Sadat, M. R. Ali, S. Ben Said, and M. Azhar, “A numerical performance of the novel fractional water pollution model through the Levenberg-Marquardt backpropagation method,” Arabian Journal of Chemistry, vol. 16, no. 2, p. 104493, 2023, doi: 10.1016/j.arabjc.2022.104493.

S. A. Idris, M. Markom, N. Abd Rahman, and J. Mohd Ali, “Prediction of overall yield of Gynura procumbens from ethanol-water + supercritical CO2 extraction using artificial neural network model,” Case Studies in Chemical and Environmental Engineering, vol. 5, no. December 2021, p. 100175, 2022, doi: 10.1016/j.cscee.2021.100175.

R. Sekhar, P. Shah, S. Panchal, M. Fowler, and R. Fraser, “Distance to empty soft sensor for ford escape electric vehicle,” Results in Control and Optimization, vol. 9, no. May, p. 100168, 2022, doi: 10.1016/j.rico.2022.100168.

N. Doner, K. Ciddi, I. B. Yalcin, and M. Sarivaz, “Artificial neural network models for heat transfer in the freeboard of a bubbling fluidised bed combustion system,” Case Studies in Thermal Engineering, vol. 49, no. February, p. 103145, 2023, doi: 10.1016/j.csite.2023.103145.

C. C. Nwanwe, U. I. Duru, C. Anyadiegwu, and A. I. B. Ekejuba, “An artificial neural network visible mathematical model for real-time prediction of multiphase flowing bottom-hole pressure in wellbores,” Petroleum Research, vol. 8, no. 3, pp. 370–385, 2023, doi: 10.1016/j.ptlrs.2022.10.004.

A. Afandi, N. Lusi, I. G. N. B. Catrawedarma, S. Subono, and B. Rudiyanto, “Prediction of temperature in 2 meters temperature probe survey in Blawan geothermal field using artificial neural network (ANN) method,” Case Studies in Thermal Engineering, vol. 38, no. October 2021, p. 102309, 2022, doi: 10.1016/j.csite.2022.102309.

S S. Bhattacharya, K. Govindan, S. G. Dastidar, and P. Sharma, “Applications of artificial intelligence in closed-loop supply chains: Systematic literature review and future research agenda,” Transp Res E Logist Transp Rev, vol. 184, no. December 2023, p. 103455, 2024, doi: 10.1016/j.tre.2024.103455

R. Zhou, D. Wu, L. Fang, A. Xu, and X. Lou, “A Levenberg-Marquardt backpropagation neural network for predicting forest growing stock based on the least-squares equation fitting parameters,” Forests, vol. 9, no. 12, pp. 1–16, 2018, doi: 10.3390/f9120757.

C. Crisosto, M. Hofmann, R. Mubarak, and G. Seckmeyer, “One-hour prediction of the global solar irradiance from all-sky images using artificial neural networks,” Energies (Basel), vol. 11, no. 11, 2018, doi: 10.3390/en11112906.

A. C. Affam, M. Chaudhuri, C. C. Wong, and C. S. Wong, “Artificial Neural Network (ANN) Modeling for Prediction of Pesticide Wastewater Degradation by FeGAC/H2O2 Process,” E3S Web of Conferences, vol. 65, 2018, doi: 10.1051/e3sconf/20186505004.

J. W. Lin, C. T. Chao, and J. S. Chiou, “Backpropagation neural network as earthquake early warning tool using a new modified elementary Levenberg-Marquardt Algorithm to minimise backpropagation errors,” Geoscientific Instrumentation, Methods and Data Systems, vol. 7, no. 3, pp. 235–243, 2018, doi: 10.5194/gi-7-235-2018.

P. T. T. Ngo et al., “A novel hybrid swarm optimized multilayer neural network for spatial prediction of flash floods in tropical areas using sentinel-1 SAR imagery and geospatial data,” Sensors (Switzerland), vol. 18, no. 11, 2018, doi: 10.3390/s18113704.

R. Kasem, D. ALabdeh, R. Noori, and A. Karbassi, “A software sensor for in-situ monitoring of the 5-day biochemical oxygen demand,” Rudarsko Geolosko Naftni Zbornik, vol. 33, no. 1, pp. 15–22, 2018, doi: 10.17794/rgn.2018.1.3.

E. T. Lau, L. Sun, and Q. Yang, “Modelling, prediction and classification of student academic performance using artificial neural networks,” SN Appl Sci, vol. 1, no. 9, pp. 1–10, 2019, doi: 10.1007/s42452-019-0884-7.

H. S. Abdelkhalek, H. Medhat, I. Ziedan, and M. Amal, “Simulation and prediction for a satellite temperature sensors based on artificial neural network,” Journal of Aerospace Technology and Management, vol. 11, pp. 1–14, 2019, doi: 10.5028/jatm.v11.1055.

O. A. Olalere, N. H. Abdurahman, R. bin M. Yunus, and O. R. Alara, “Multi-response optimization and neural network modeling for parameter precision in heat reflux extraction of spice oleoresins from two pepper cultivars (Piper nigrum),” J King Saud Univ Sci, vol. 31, no. 4, pp. 789–797, 2019, doi: 10.1016/j.jksus.2017.09.010.

L. Zhang, H. Li, and X. G. Kong, “Evolving feedforward artificial neural networks using a two-stage approach,” Neurocomputing, vol. 360, pp. 25–36, 2019, doi: 10.1016/j.neucom.2019.03.097.

J. Pribbenow, M. Mejauschek, P. Landgraf, T. Grund, G. Braüer, and T. Lampke, “Neural network for prediction of hardness profiles for steel alloys after plasma nitriding,” IOP Conf Ser Mater Sci Eng, vol. 480, no. 1, 2019, doi: 10.1088/1757-899X/480/1/012019.

M. Fayed, M. Elhadary, H. A. Abderrahmane, and B. N. Zakher, “The ability of forecasting flapping frequency of flexible filament by artificial neural network,” Alexandria Engineering Journal, vol. 58, no. 4, pp. 1367–1374, 2019, doi: 10.1016/j.aej.2019.11.007.

D. Bhavsar, M. Bhatt, M. Choksi, and G. Nagababu, “Comparative analysis of Artificial Neural Networks with conventional methods for extrapolation of wind speed at an elevated height,” IOP Conf Ser Mater Sci Eng, vol. 605, no. 1, 2019, doi: 10.1088/1757-899X/605/1/012011.

W. S. Chan, R. A. Samah, N. Zainol, A. S. Fakharudin, S. A. Aziz, and L. Y. Phang, “Modeling of vanillin adsorption from aqueous solution using resin H103 by artificial neural network,” IOP Conf Ser Mater Sci Eng, vol. 702, no. 1, 2019, doi: 10.1088/1757-899X/702/1/012048.

S. Tangjitsitcharoen, “Comparison of neural networks and regression analysis to predict in-process straightness in CNC turning,” Procedia Manuf, vol. 51, pp. 222–227, 2020, doi: 10.1016/j.promfg.2020.10.032.

A. A. Kasim, M. Bakri, and A. Septiarini, “The Artificial Neural Networks (ANN) for Batik Detection Based on Textural Features,” Proceedings of the 7th Mathematics, Science, and Computer Science Education International Seminar, MSCEIS 2019, 2020, doi: 10.4108/eai.12-10-2019.2296538.

M. A. Jallal, A. El Yassini, S. Chabaa, A. Zeroual, and S. Ibnyaich, “AI data driven approach-based endogenous inputs for global solar radiation forecasting,” Ingenierie des Systemes d’Information, vol. 25, no. 1, pp. 27–34, 2020, doi: 10.18280/isi.250104.

J. N. Ogunbo, O. A. Alagbe, M. I. Oladapo, and C. Shin, “N-Hidden Layer artificial neural network architecture computer code: geophysical application example,” Heliyon, vol. 6, no. 6, p. e04108, 2020, doi: 10.1016/j.heliyon.2020.e04108.

D. S. Kapoor and A. K. Kohli, “Intelligence-based channel equalization for 4x1 sfbc-ofdm receiver,” Intelligent Automation and Soft Computing, vol. 26, no. 3, pp. 439–446, 2020, doi: 10.32604/iasc.2020.013920.

S. Verma, G. T. Thampi, and M. Rao, “ANN based method for improving gold price forecasting accuracy through modified gradient descent methods,” IAES International Journal of Artificial Intelligence, vol. 9, no. 1, pp. 46–57, 2020, doi: 10.11591/ijai.v9.i1.pp46-57.

T. Y. Liu, P. Zhang, J. Wang, and Y. F. Ling, “Compressive strength prediction of PVA fiber-reinforced cementitious composites containing nano-SiO2 using BP neural network,” Materials, vol. 13, no. 3, 2020, doi: 10.3390/ma13030521.

Y. J. Wong, K. B. Mustapha, Y. Shimizu, A. Kamiya, and S. K. Arumugasamy, “Development of surrogate predictive models for the nonlinear elasto-plastic response of medium density fibreboard-based sandwich structures,” International Journal of Lightweight Materials and Manufacture, vol. 4, no. 3, pp. 302–314, 2021, doi: 10.1016/j.ijlmm.2021.02.002.

M. A. Z. Raja et al., “Cattaneo-christov heat flux model of 3D hall current involving biconvection nanofluidic flow with Darcy-Forchheimer law effect: Backpropagation neural networks approach,” Case Studies in Thermal Engineering, vol. 26, no. April, p. 101168, 2021, doi: 10.1016/j.csite.2021.101168.

M. R. Mohammadi, A. H. Sarapardeh, M. Schaffie, M. M. Husein, and M. Ranjbar, “Application of cascade forward neural network and group method of data handling to modeling crude oil pyrolysis during thermal enhanced oil recovery,” J Pet Sci Eng, vol. 205, no. April, p. 108836, 2021, doi: 10.1016/j.petrol.2021.108836.

R. Vijayakumar and N. Pannirselvam, “Multi-objective optimisation of mild steel embossed plate shear connector using artificial neural network-integrated genetic algorithm,” Case Studies in Construction Materials, vol. 17, no. July, p. e01560, 2022, doi: 10.1016/j.cscm.2022.e01560.

D. K. Jana, P. Bhunia, S. Das Adhikary, and B. Bej, “Optimization of Effluents Using Artificial Neural Network and Support Vector Regression in Detergent Industrial Wastewater Treatment,” Cleaner Chemical Engineering, vol. 3, no. April, p. 100039, 2022, doi: 10.1016/j.clce.2022.100039.

D. S. Adelekan, O. S. Ohunakin, and B. S. Paul, “Artificial intelligence models for refrigeration, air conditioning and heat pump systems,” Energy Reports, vol. 8, pp. 8451–8466, 2022, doi: 10.1016/j.egyr.2022.06.062.

I. Veza et al., “Improved prediction accuracy of biomass heating value using proximate analysis with various ANN training algorithms,” Results in Engineering, vol. 16, no. October, p. 100688, 2022, doi: 10.1016/j.rineng.2022.100688.

F. Faraji, C. Santim, P. L. Chong, and F. Hamad, “Two-phase flow pressure drop modelling in horizontal pipes with different diameters,” Nuclear Engineering and Design, vol. 395, no. July, p. 111863, 2022, doi: 10.1016/j.nucengdes.2022.111863.

C. Couto, “Neural network models for the critical bending moment of uniform and tapered beams,” Structures, vol. 41, no. May, pp. 1746–1762, 2022, doi: 10.1016/j.istruc.2022.05.096.

K. Nwosu-Obieogu, E. Grace, K. F. Adekunle, L. I. Chiemenem, F. O. Aguele, and G. W. Dzarma, “In-situ selective epoxidation of Colocynthis Vulgaris shrad seed oil for the synthesis of a methacrylated biobased resin; An artificial neural network (ANN) modelling approach,” Cleaner and Circular Bioeconomy, vol. 3, no. October, p. 100028, 2022, doi: 10.1016/j.clcb.2022.100028.

K. Mukdasai, Z. Sabir, M. A. Z. Raja, R. Sadat, M. R. Ali, and P. Singkibud, “A numerical simulation of the fractional order Leptospirosis model using the supervise neural network,” Alexandria Engineering Journal, vol. 61, no. 12, pp. 12431–12441, 2022, doi: 10.1016/j.aej.2022.06.013.

G. Cuahuizo-Huitzil et al., “Artificial Neural Networks for Predicting the Diameter of Electrospun Nanofibers Synthesized from Solutions/Emulsions of Biopolymers and Oils,” Materials, vol. 16, no. 16, 2023, doi: 10.3390/ma16165720.

A. Q. Khan, H. A. Awan, M. Rasul, Z. A. Siddiqi, and A. Pimanmas, “Optimized artificial neural network model for accurate prediction of compressive strength of normal and high strength concrete,” Cleaner Materials, vol. 10, no. October, p. 100211, 2023, doi: 10.1016/j.clema.2023.100211.

D. J. Rufina R, H. Uthayakumar, and P. Thangavelu, “Prediction of the size of green synthesized silver nanoparticles using RSM-ANN-LM hybrid modeling approach,” Chemical Physics Impact, vol. 6, no. May, p. 100231, 2023, doi: 10.1016/j.chphi.2023.100231.

T. A. woldegiyorgis et al., “Harnessing solar power: Predicting photovoltaic potential in fiche, oromia, ethiopia with artificial neural networks,” Sci Afr, vol. 21, no. March, p. e01884, 2023, doi: 10.1016/j.sciaf.2023.e01884.

F. Aslani, J. Yu, Y. Zhang, and A. Valizadeh, “Development of prediction models for evaluation of alkali-silica reaction in concrete,” Case Studies in Construction Materials, vol. 19, no. August, p. e02465, 2023, doi: 10.1016/j.cscm.2023.e02465.

A. S. Baazeem, M. S. Arif, and K. Abodayeh, “An Efficient and Accurate Approach to Electrical Boundary Layer Nanofluid Flow Simulation: A Use of Artificial Intelligence,” Processes, vol. 11, no. 9, 2023, doi: 10.3390/pr11092736.

F. T. Putri et al., “Human Walking Gait Classification Utilizing an Artificial Neural Network for the Ergonomics Study of Lower Limb Prosthetics,” Prosthesis, vol. 5, no. 3, pp. 647–665, 2023, doi: 10.3390/prosthesis5030046.

E. Thangapandian, P. Palanisamy, S. K. Selvaraj, U. Chadha, and M. Khanna, “Detailed experimentation and prediction of thermophysical properties in lauric acid-based nanocomposite phase change material using artificial neural network,” J Energy Storage, vol. 74, no. PB, p. 109345, 2023, doi: 10.1016/j.est.2023.109345.

Z. Huang, Q. Haider, Z. Sabir, M. Arshad, B. K. Siddiqui, and M. M. Alam, “A neural network computational structure for the fractional order breast cancer model,” Sci Rep, vol. 13, no. 1, pp. 1–14, 2023, doi: 10.1038/s41598-023-50045-z.

E. Gheller, S. Chatterton, D. Panara, G. Turini, and P. Pennacchi, “Artificial neural network for tilting pad journal bearing characterization,” Tribol Int, vol. 188, no. June, p. 108833, 2023, doi: 10.1016/j.triboint.2023.108833.

Z. Sabir, S. Ben Said, and Q. Al-Mdallal, “A fractional order numerical study for the influenza disease mathematical model,” Alexandria Engineering Journal, vol. 65, pp. 615–626, 2023, doi: 10.1016/j.aej.2022.09.034.

A. N. Sharkawy, A. Ma’arif, Furizal, R. Sekhar, and P. Shah, “A Comprehensive Pattern Recognition Neural Network for Collision Classification Using Force Sensor Signals,” Robotics, vol. 12, no. 5, pp. 1–20, 2023, doi: 10.3390/robotics12050124.

B. K. Sharma, P. Sharma, N. K. Mishra, and U. Fernandez-Gamiz, “Darcy-Forchheimer hybrid nanofluid flow over the rotating Riga disk in the presence of chemical reaction: Artificial neural network approach,” Alexandria Engineering Journal, vol. 76, pp. 101–130, 2023, doi: 10.1016/j.aej.2023.06.014.

M. T. Hussain, A. Sarwar, M. Tariq, S. Urooj, A. BaQais, and M. A. Hossain, “An Evaluation of ANN Algorithm Performance for MPPT Energy Harvesting in Solar PV Systems,” Sustainability (Switzerland), vol. 15, no. 14, 2023, doi: 10.3390/su151411144.

I. U. Nzelibe and T. O. Idowu, “Refinement of global gridded ray-traced Zenith tropospheric delay over Nigeria based on local GNSS network observations,” Geosystems and Geoenvironment, vol. 2, no. 1, p. 100137, 2023, doi: 10.1016/j.geogeo.2022.100137.

M. Sedighkia and B. Datta, “Detecting land use changes using hybrid machine learning methods in the Australian tropical regions,” GeoJournal, vol. 88, no. s1, pp. 241–253, 2023, doi: 10.1007/s10708-022-10678-5.

P. Kaswan, M. Kumar, and M. Kumari, “Analysis of a bioconvection flow of magnetocross nanofluid containing gyrotactic microorganisms with activation energy using an artificial neural network scheme,” Results in Engineering, vol. 17, no. January, p. 101015, 2023, doi: 10.1016/j.rineng.2023.101015.

R. Mukhtar, C. Y. Chang, M. A. Z. Raja, and N. I. Chaudhary, “Design of Intelligent Neuro-Supervised Networks for Brain Electrical Activity Rhythms of Parkinson’s Disease Model,” Biomimetics, vol. 8, no. 3, 2023, doi: 10.3390/biomimetics8030322.

K. S. Nisar, F. Sahar, M. Asif Zahoor Raja, and M. Shoaib, “Intelligent neuro-computing to analyze the awareness programs of fractional epidemic system outbreaks,” J King Saud Univ Sci, vol. 35, no. 5, p. 102691, 2023, doi: 10.1016/j.jksus.2023.102691.

J. A. Shuhli et al., “An Efficient and Accurate Approach to Electrical Boundary Layer Nanofluid Flow Simulation: A Use of Artificial Intelligence,” Materials, vol. 12, no. 1, pp. 3–21, Aug. 2023, doi: 10.1515/eng-2022-0590.

B. Muktar, V. Fono, and M. Zongo, “Predictive Modeling of Signal Degradation in Urban VANETs Using Artificial Neural Networks,” Electronics (Switzerland), vol. 12, no. 18, pp. 1–18, 2023, doi: 10.3390/electronics12183928.

Z. A. H. Hamza, “Predicted evaporation in Basrah using artificial neural networks,” Open Engineering, vol. 14, no. 1, 2024, doi: 10.1515/eng-2022-0590.

Z. Khoshraftar, A. Ghaemi, and A. Hemmati, “Comprehensive investigation of isotherm, RSM, and ANN modeling of CO2 capture by multi-walled carbon nanotube,” Sci Rep, vol. 14, no. 1, pp. 1–29, 2024, doi: 10.1038/s41598-024-55836-6.

K. U. Rehman, W. Shatanawi, and M. Y. Malik, “Group theoretic thermal analysis (GTTA) of Powell-Eyring fluid flow with Identical free stream (FS) and heated stretched porous (HSP) boundaries: AI Decisions,” Case Studies in Thermal Engineering, vol. 55, no. October 2023, p. 104101, 2024, doi: 10.1016/j.csite.2024.104101.

M. T. Mezher, A. Pereira, T. Trzepieciński, and J. Acevedo, “Artificial Neural Networks and Experimental Analysis of the Resistance Spot Welding Parameters Effect on the Welded Joint Quality of AISI 304,” Materials, vol. 17, no. 9, 2024, doi: 10.3390/ma17092167.

V. Mahesh, “Machine learning assisted nonlinear deflection analysis of agglomerated carbon nanotube core smart sandwich plate with three-phase magneto-electro-elastic skin,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 238, no. 1, pp. 3–21, 2024, doi: 10.1177/14644207231180459.

A. Patel, K. P. Singh, A. K. Roul, K. N. Agrawal, K. Singh, and M. Kumar, “Prediction of Paddy Straw Mechanical Properties under Varying Moisture Content and Loading Rate using ANN,” J Sci Ind Res (India), vol. 83, no. 1, pp. 76–83, 2024, doi: 10.56042/jsir.v83i1.5418.

M. Shoaib, S. U. Saqib, K. S. Nisar, M. A. Z. Raja, and I. A. Mohammed, “Numerical treatment for the desirability of Hall current and activation energy in the enhancement of heat transfer in a nanofluidic system,” Arabian Journal of Chemistry, vol. 17, no. 2, p. 105526, 2024, doi: 10.1016/j.arabjc.2023.105526.

H. Shahzad, M. N. Sadiq, Z. Li, S. Algarni, T. Alqahtani, and K. Irshad, “Scientific computing of radiative heat transfer with thermal slip effects near stagnation point by artificial neural network,” Case Studies in Thermal Engineering, vol. 54, no. January, p. 104024, 2024, doi: 10.1016/j.csite.2024.104024.

K. C. Shikhar, K. P. Bhattarai, T. De Shan, S. Mishra, I. Joshi, and A. K. Singh, “Comprehensive performance analysis of training functions in flow prediction modeusing artificial neural network,” Water SA, vol. 50, no. 2, pp. 190–200, 2024, doi: 10.17159/wsa/2024.v50.i2.4099.

J. Sumathi, P. Aravind, and G. Gandhimathi, “Smart solutions for dissolved oxygen control in semi-batch fermenters: A machine learning approach,” Desalination Water Treat, vol. 317, no. December 2023, p. 100004, 2024, doi: 10.1016/j.dwt.2024.100004.

C. Windarto and O. Lim, “A neural network approach on forecasting spark duration effect on in-cylinder performance of a large bore compression ignition engine fueled with propane direct injection,” Fuel Processing Technology, vol. 257, no. September 2023, p. 108088, 2024, doi: 10.1016/j.fuproc.2024.108088.

S. Nasir, A. S. Berrouk, and T. Gul, “Analysis of chemical reactive nanofluid flow on stretching surface using numerical soft computing approach for thermal enhancement,” Engineering Applications of Computational Fluid Mechanics, vol. 18, no. 1, 2024, doi: 10.1080/19942060.2024.2340609.

A. Khan, F. Aljuaydi, Z. Khan, and S. Islam, “Numerical analysis of thermophoretic particle deposition on 3D Casson nanofluid: Artificial neural networks-based Levenberg-Marquardt algorithm,” Open Physics, vol. 22, no. 1, 2024, doi: 10.1515/phys-2023-0181.

M. Troiano, E. Nobile, F. Mangini, M. Mastrogiuseppe, C. Conati Barbaro, and F. Frezza, “A Comparative Analysis of the Bayesian Regularization and Levenberg–Marquardt Training Algorithms in Neural Networks for Small Datasets: A Metrics Prediction of Neolithic Laminar Artefacts,” Information (Switzerland), vol. 15, no. 5, 2024, doi: 10.3390/info15050270.

I. Ahmad, H. Qureshi, M. A. Z. Raja, S. I. Hussain, and S. Fatima, “A novel design of stochastic approximation treatment of longitudinal rectangular fin dynamical model,” Case Studies in Thermal Engineering, vol. 54, no. January, p. 104042, 2024, doi: 10.1016/j.csite.2024.104042.

K. U. Rehman and W. Shatanawi, “Lie symmetry based neural networking analysis for Powell–Eyring fluid flow with heat and mass transfer effects,” International Journal of Thermofluids, vol. 22, no. February, p. 100602, 2024, doi: 10.1016/j.ijft.2024.100602.




DOI: http://dx.doi.org/10.36722/sst.v10i2.3788

Refbacks



LP2M (Lembaga Penelitian dan Pengembangan Masyarakat)

Universitas AL-AZHAR INDONESIA, Lt.2 Ruang 207

Kompleks Masjid Agung Al Azhar

Jl. Sisingamangaraja, Kebayoran Baru

Jakarta Selatan 12110

Visitor

 This work is licensed under CC BY 4.0