Dual Sistem Keamanan Pada Pintu Dengan Pengenalan Wajah Local Binary Pattern Histogram (LBPH) Dan Sidik Jari serta Notifikasi Telegram

Abi Maulana(1*), Aulia Ullah(2), Ahmad Faizal(3), Hilman Zarory(4),


(1) Universitas Islam Negeri Sultan Syarif Kasim Riau
(2) Universitas Islam Negeri Sultan Syarif Kasim Riau
(3) Universitas Islam Negeri Sultan Syarif Kasim Riau
(4) Universitas Islam Negeri Sultan Syarif Kasim Riau
(*) Corresponding Author

Abstract


Conventional door security systems, such as padlocks and manual keys, have weaknesses, including vulnerability to duplication and the risk of loss. Biometric-based systems, such as facial recognition, offer a more reliable solution through unique user identification. This study develops a door security system using the Local Binary Pattern Histogram (LBPH) method for facial recognition, complemented by fingerprint verification as an additional security layer and real-time notifications via the Telegram application. The LBPH method was chosen for its ease of implementation and processing speed, although it has limitations such as sensitivity to lighting changes and potential recognition errors due to similar facial textures. The system utilizes LBPH for initial authentication, followed by fingerprint verification. Users also receive real-time notifications via Telegram to monitor access attempts. Testing showed a facial recognition accuracy of 85% under bright lighting conditions at distances of 30–150 cm, but it decreased to 65% in dim lighting. Fingerprint verification took approximately 2 seconds, while notification delivery required 1–2 seconds on a stable internet network. This system enhances security by ensuring only registered users can unlock the door. If facial recognition fails, the door remains locked without valid fingerprint verification.

Keywords - Face Recognition, Fingerprint Sensor, LBPH, Security System, Telegram Notification.


Full Text:

PDF

References


E. H. Ulfa, M. Abroruddin, F. Ramadhan, and A. Roihan, “Perancangan Sistem Pengaman Pintu Rumah menggunakan Sidik Jari berbasis Arduino,” SELL J., vol. 5, no. 1, p. 55, 2020.

I. Gusman and R. Mukhaiyar, “Sistem Buka Tutup Pintu Otomatis Berbasis Sensor Wajah,” JTEIN J. Tek. Elektro Indones., vol. 4, no. 2, pp. 511–518, 2023, doi: 10.24036/jtein.v4i2.400.

R. Muwardi and R. R. Adisaputro, “Design Sistem Keamanan Pintu Menggunakan Face Detection,” J. Teknol. Elektro, vol. 12, no. 3, p. 120, 2021, doi: 10.22441/jte.2021.v12i3.004.

V. Pradana and H. L. Wiharto, “Rancang Bangun Smart Locker Menggunakan Rfid Berbasis Arduino Uno,” El Sains J. Elektro, vol. 2, no. 1, pp. 55–61, 2020, doi: 10.30996/elsains.v2i1.4016.

R. Arlando Saragih, “Pengenalan Wajah Menggunakan Metode Fisherface,” J. Tek. Elektro, vol. 7, no. 1, pp. 50–61, 2007, doi: 10.9744/jte.7.1.50-62.

A. Kasinski and A. Schmidt, “The architecture and performance of the face and eyes detection system based on the Haar cascade classifiers,” Pattern Anal. Appl., vol. 13, no. 2, pp. 197–211, 2010, doi: 10.1007/s10044-009-0150-5.

M. M. Asri and Haddad Maulana, “Smart Security Camera dengan Metode LBPH dan Haar- Cascade Berbasis Raspberry Pi dan Aplikasi Telegram Smart Security Camera dengan Metode LBPH dan Haar- Cascade Berbasis Raspberry Pi dan Aplikasi Telegram,” no. 19524005, pp. 1–47, 2023.

F. L. Ramadini and E. Haryatmi, “Penggunaan Metode Haar Cascade Classifier dan LBPH Untuk Pengenalan Wajah Secara Realtime,” InfoTekJar J. Nas. Inform. dan Teknol. Jar., vol. 6, no. 2, pp. 1–8, 2022, [Online]. Available: https://jurnal.uisu.ac.id/index.php/infotekjar/article/view/4714/pdf.

R. H. Bustomi and T. Hariyanto, “Sistem Absensi Berbasis Pengenalan Wajah Dengan Metode Lbph Menggunakan Raspberry Pi,” Pros. Ind. Res. Work. Natl. Semin., pp. 26–27, 2020, [Online]. Available: https://jurnal.polban.ac.id/proceeding/article/view/2047.

A.- Suryansah, R.- Habibi, R. M. Awangga, and R. N. S. Fatonah, “Implementasi Face Recognition Untuk Mengakses Ruangan,” J. Mediat., vol. 3, no. 3, p. 25, 2020, doi: 10.26858/jmtik.v3i3.15176.

W. A. Putra, R. Maulana, and F. Utaminingrum, “Implementasi Sistem Otomatisasi Pintu Dengan Face Recognition Menggunakan Metode Haar-Cascade Dan Local Binary Pattern Pada Raspberry Pi,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 12, pp. 6997–7006, 2018.

H. Fauziman and R. Mukhaiyar, “Rancang Bangun Sistem Keamanan Pintu Menggunakan Fingerprint Berbasis Internet Of Things (IoT),” JTEIN J. Tek. Elektro Indones., vol. 4, no. 2, pp. 529–537, 2023, doi: 10.24036/jtein.v4i2.438.

T. Juwariyah and A. C. Dewi, “Rancang Bangun Sistem Keamanan Sepeda Motor Dengan Sensor Sidik Jari,” Bina Tek., vol. 13, no. 2, p. 223, 2017, doi: 10.54378/bt.v13i2.227.

I. I. Setiawan, A. Jaenul, and D. Priyokusumo, “Prototipe Sistem Keamanan Rumah Menggunakan Face Recognition Berbasis Raspberry Pi 4,” J. Poltekba, vol. 4, no. 1, pp. 496–501, 2020.

Q. Mutiara and E. Prasetyo, “Perbandingan Metode Eigenface, Fisherface, dan LBPH pada Sistem Pengenalan Wajah,” J. Ilm. Komputasi, vol. 18, no. 4, 2019, doi: 10.32409/jikstik.18.4.2675.

D. Yulianti, I. Triastomoro, and S. Sa’idah, “Identifikasi Pengenalan Wajah Untuk Sistem Presensi Menggunakan Metode Knn (K-Nearest Neighbor),” J. Tek. Inf. dan Komput., vol. 5, no. 1, pp. 1–10, 2022, doi: 10.37600/tekinkom.v5i1.477.

S. Sunardi, A. Yudhana, and M. A. Talib, “Perancangan Sistem Pengenalan Wajah untuk Keamanan Ruangan Menggunakan Metode Local Binary Pattern Histogram,” J. Teknol. Elektro, vol. 13, no. 2, p. 123, 2022, doi: 10.22441/jte.2022.v13i2.010.

R. Pradista, T. Darmanto, and A. Yulius, “Simulasi Pengenalan Wajah Dengan Metode Local Binary Pattern Histogram (Lbph),” J. InTekSis, vol. 11, no. 1, p. 78-88, 2024.




DOI: http://dx.doi.org/10.36722/sst.v10i2.3696

Refbacks

  • There are currently no refbacks.


LP2M (Lembaga Penelitian dan Pengembangan Masyarakat)

Universitas AL-AZHAR INDONESIA, Lt.2 Ruang 207

Kompleks Masjid Agung Al Azhar

Jl. Sisingamangaraja, Kebayoran Baru

Jakarta Selatan 12110

Visitor

 This work is licensed under CC BY 4.0