Karakteristik Kimia, Sifat Fungsional, dan Prediksi Indeks Glikemik Tepung Komposit Berbasis Hanjeli (Coix lacryma-Jobi) Termodifikasi
Abstract
In 2021, Indonesia ranked 5th globally for the highest number of diabetes cases, primarily due to excessive consumption of high-glycemic index foods. The glycemic index is influenced by fiber, minerals, bioactive compounds, and starch modification. This study aims to determine the optimal formulation of Heat Moisture Treatment (HMT) modified hanjeli flour, dragon fruit peel flour, and cashew nut flour to obtain composite flour with the lowest predicted glycemic index. The physical, functional, and chemical properties of the flour were also analyzed. A Completely Randomized Design (CRD) with one factor and five treatments was used. Composite flour was prepared by mixing dried ingredients using a food dehydrator. Results showed that sample F5 (45% dragon fruit peel flour) had the highest Water Holding Capacity (WHC) and Oil Holding Capacity (OHC). Fiber content, ash content, total phenolics, and resistant starch increased with the higher ratio of dragon fruit peel flour, whereas rapid digestible starch (RDS) and slow digestible starch (SDS) decreased as the proportion of modified hanjeli flour decreased. Sample F4 (50% modified hanjeli flour, 35% dragon fruit peel flour, and 15% cashew nut flour) had the lowest predicted glycemic index (40.53), making it a promising ingredient for low-glycemic index foods.
Keywords – Bioactive Compounds, Diabetes, Fiber Content, Heat Moisture Treatment, Modified Starch.
Full Text:
PDFReferences
“IDF Diabetes Atlas 2021 | IDF Diabetes Atlas.” Accessed: Nov. 29, 2024. [Online]. Available: https://diabetesatlas.org/atlas/tenth-edition/
A. Chaudhury et al., “Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management,” Front Endocrinol (Lausanne), vol. 8, no. January, 2017, doi: 10.3389/fendo.2017.00006.
M. Di Cairano, N. Condelli, M. C. Caruso, A. Marti, N. Cela, and F. Galgano, “Functional properties and predicted glycemic index of gluten free cereal, pseudocereal and legume flours,” LWT, vol. 133, Nov. 2020, doi: 10.1016/j.lwt.2020.109860.
H. Aalim, D. Wang, and Z. Luo, “Black rice (Oryza sativa L.) processing: Evaluation of physicochemical properties, in vitro starch digestibility, and phenolic functions linked to type 2 diabetes,” Food Research International, vol. 141, p. 109898, Mar. 2021, doi: 10.1016/J.FOODRES.2020.109898.
S. Widowati, S. Kirana, and R. Banurea, “Karakteristik Fisikomia dan Fungsional Nasi Instan,” Jurnal Pangan, vol. 29, no. 2, pp. 87–104, 2020.
T. H. A. Mai, T. T. T. Tran, and V. V. M. Le, “Effects of Pitaya Peel Supplementation on Nutritional Quality, Overall Sensory Acceptance, in Vitro Glycemic Index, and Antioxidant Release from Fiber-Enriched Cookies,” J Food Qual, vol. 2023, 2023, doi: 10.1155/2023/3166524.
S. K. Reshmi, M. L. Sudha, and M. N. Shashirekha, “Starch digestibility and predicted glycemic index in the bread fortified with pomelo (Citrus maxima) fruit segments,” Food Chem, vol. 237, pp. 957–965, Dec. 2017, doi: 10.1016/J.FOODCHEM.2017.05.138.
D. H. Geng, N. Tang, X. Zhang, M. Zhao, X. Jia, and Y. Cheng, “Insights into the textural properties and starch digestibility on rice noodles as affected by the addition of maize starch and rice starch,” LWT, vol. 173, p. 114265, Jan. 2023, doi: 10.1016/J.LWT.2022.114265.
M. L. Trianawati, C. Nurwitri, T. Risnawati, and S. Rejeki, “Karakteristik Fisik dan Kimia Tepung (Coix lacryma-jobi L.) yang Dimodifikasi dengan Na2S2O5 dan Aplikasinya pada Cupcake,” Jurnal Sains Terapan, 2022, Accessed: Mar. 11, 2024. [Online]. Available: https://journal.ipb.ac.id/index.php/jstsv/article/view/42359/23861
E. Subroto, R. Indiarto, E. Wulandari, and A. P. Astari, “Modifikasi Pati Hanjeli (Coix lacryma-jobi L.) Berpori melalui Ultrasonikasi dan Ozonasi,” Jurnal Teknologi Hasil Pertanian, vol. 14, no. 2, p. 117, Nov. 2021, doi: 10.20961/jthp.v14i2.54338.
V. Marboh and C. L. Mahanta, “Rheological and textural properties of sohphlang (Flemingia vestita) starch gels as affected by heat moisture treatment and annealing,” Food Chemistry Advances, vol. 3, Dec. 2023, doi: 10.1016/J.FOCHA.2023.100542.
C. Cerlyn, A. Ansharullah, and M. L, “Pengaruh Subsitusi Tepung Sagu HMT pada Pembuatan Sirup Kulit Buah Naga Merah terhadap Karakteristik Organoleptik, Viskositas, dan Aktivitas Antioksidan,” Jurnal Sains dan Teknologi Pangan, vol. 7, no. 1, pp. 4692–4705, Mar. 2022, doi: 10.33772/JSTP.V7I1.24132.
K. Schafranski, V. C. Ito, and L. G. Lacerda, “Impacts and potential applications: A review of the modification of starches by heat-moisture treatment (HMT),” Food Hydrocoll, vol. 117, p. 106690, Aug. 2021, doi: 10.1016/J.FOODHYD.2021.106690.
K. Liu, B. Zhang, L. Chen, X. Li, and B. Zheng, “Hierarchical structure and physicochemical properties of highland barley starch following heat moisture treatment,” Food Chem, vol. 271, pp. 102–108, Jan. 2019, doi: 10.1016/j.foodchem.2018.07.193.
Q. Guo, L. Chen, D. Yang, and B. Zheng, “Heat-moisture treatment enhances the ordered degree of starch structure in whole chestnut flour and alters its gut microbiota modulation in mice fed with high-fat diet,” Int J Biol Macromol, vol. 254, Jan. 2024, doi: 10.1016/j.ijbiomac.2023.127961.
M. Chuwech, N. Rakariyatham, J. Tinoi, P. Suwitchayanon, and N. Chandet, “Effect of Heat–Moisture Treatment on Crystallinity, Digestibility Properties, Bioactive Compounds, and Antioxidant Activity of Purple Rice (Oryza sativa L. indica) Flour,” Processes, vol. 11, no. 3, Mar. 2023, doi: 10.3390/pr11030969.
N. M. Adelina, W. Maghfiroh, B. Kiara Ramadhani Lubis, and N. Kilka Ramadhan, “Karakteristik Fisikokimia dan Sensori Selai Bengkuang dengan Penambahan Kulit Buah Naga Merah Sebagai Pewarna Alami,” Food and Agro Industry, vol. 3, no. 2, pp. 115–132, 2022.
D. Zhang, N. M. Adelina, Z. Fan, and J. Liu, “Phytochemical profile and biological activities from different parts of Vaccinium vitis-idaea,” J Berry Res, vol. 12, no. 4, pp. 445–462, Jan. 2022, doi: 10.3233/JBR-220019.
R. Qalbi, S. Giovani, Q. Guo, and N. M. Adelina, “Effect of Drying Time on Physicochemical Characteristics of Dragon Fruit Peels Powder (Hylocereus polyrhizus),” Journal of Agri-Food Science and Technology (JAFoST), vol. 4, no. 2, pp. 81–96, 2023, doi: 10.12928/jafost.v4i2.9294.
D. Zhang, N. M. Adelina, Z. Fan, and J. Liu, “Phytochemical profile and biological activities from different parts of Vaccinium vitis-idaea,” J Berry Res, vol. 12, no. 4, pp. 445–462, Dec. 2022, doi: 10.3233/JBR-220019.
X. Xu, L. Ding, Y. Fu, Y. Wang, and S. Cai, “Polyphenol-rich extract of Chinese sumac (Rhus chinensis Mill.) fruits and its main component decrease in vitro starch digestibility of bread: Exploring the potential mechanisms from the perspective of molecular interactions,” LWT, vol. 195, p. 115856, Mar. 2024, doi: 10.1016/J.LWT.2024.115856.
H. A. Ghazzawi and K. Al-Ismail, “A Comprehensive Study on the Effect of Roasting and Frying on Fatty Acids Profiles and Antioxidant Capacity of Almonds, Pine, Cashew, and Pistachio,” J Food Qual, vol. 2017, 2017, doi: 10.1155/2017/9038257.
N. M. Adelina, J. An, Q. Guo, L. Zhang, and Y. Zhao, “Physicochemical quality and sensory attributes of two grafted pine nuts (Pinus koraiensis) affected by different roasting conditions,” Journal of Food Measurement and Characterization, 2024, doi: 10.1007/s11694-024-02365-5.
R. K. F. Santos et al., “Relationship among dietary intake of vitamin D, magnesium, and calcium, 25-hydroxyvitamin D levels, and glycemic control markers in individuals with type 2 diabetes,” Human Nutrition & Metabolism, vol. 34, p. 200218, Dec. 2023, doi: 10.1016/J.HNM.2023.200218.
B. Shkembi and T. Huppertz, “Glycemic Responses of Milk and Plant-Based Drinks: Food Matrix Effects,” Foods 2023, Vol. 12, Page 453, vol. 12, no. 3, p. 453, Jan. 2023, doi: 10.3390/FOODS12030453.
L. H. Ho and N. W. binti Abdul Latif, “Nutritional composition, physical properties, and sensory evaluation of cookies prepared from wheat flour and pitaya (Hylocereus undatus) peel flour blends,” Cogent Food Agric, vol. 2, no. 1, 2016, doi: 10.1080/23311932.2015.1136369.
N. M. Adelina, S. Giovani, M. Jameelah, R. Rosianajayanti, and S. F. Z. Assagaf, “Karakteristik Sensori dan Fisikokimia Kukis dari Campuran Tepung Mocaf dan Tepung Kulit Buah Naga,” Jurnal Mutu Pangan : Indonesian Journal of Food Quality, vol. 11, no. 2, pp. 96–106, Sep. 2024, doi: 10.29244/jmpi.2024.11.2.96.
M. BV and M. C, “Determination of Insoluble, Soluble, and Total Dietary Fiber in Foods Using a Rapid Integrated Procedure of Enzymatic-Gravimetric-Liquid Chromatography: First Action 2022.01,” J AOAC Int, vol. 106, no. 1, pp. 127–145, Jan. 2022, doi: 10.1093/JAOACINT/QSAC098.
A. Tri Oktarina, D. Larasati, dan Sri Haryati, J. Soekarno Hatta Tlogosari, and S. -, “Pengaruh Konsentrasi Kulit Buah Naga Merah terhadap Karakteristik Fisikokimia dan Organoleptik Permen Marshmallow,” 2021.
I. Dyah Kumalasari and A. P. Devira, “Aktivitas Antioksidan dan Evaluasi Sensori Kukis Tersubstitusi Tepung Kacang Hijau dan Tepung Kulit Buah Naga Merah,” Jurnal Teknologi dan Industri Pangan, vol. 35, no. 1, pp. 67–78, Jun. 2024, doi: 10.6066/jtip.2024.35.1.67.
K. Natalie, T. Pantjajani, A. D. R. Dewi, and M. G. M. Purwanto, “Karakterisasi fisikokimia dan functional properties tepung kulit buah jeruk bali (Citrus maxima) dan tepung kulit buah nangka (Artocarpus heterophyllus),” Teknologi Pangan : Media Informasi dan Komunikasi Ilmiah Teknologi Pertanian, vol. 13, no. 1, pp. 44–53, Mar. 2022, doi: 10.35891/tp.v13i1.2900.
M. Kaur, K. S. Sandhu, A. P. Arora, and A. Sharma, “Gluten free biscuits prepared from buckwheat flour by incorporation of various gums: Physicochemical and sensory properties,” LWT - Food Science and Technology, vol. 62, no. 1, pp. 628–632, Jun. 2015, doi: 10.1016/J.LWT.2014.02.039.
D. J. Baer and J. A. Novotny, “Metabolizable Energy from Cashew Nuts is Less than that Predicted by Atwater Factors,” Nutrients, vol. 11, no. 1, Jan. 2019, doi: 10.3390/NU11010033.
A.-N. Syifahaque, S. Siswanti, and W. Atmaka, “Pengaruh Subsituti Tepung Sorgum terhadap Karakteristik Kimia, Fisika, dan Organoleptik Cookies dengan Alpukat sebagai Substitusi,” Jurnal Teknologi Hasil Pertanian, vol. 15, no. 2, p. 119, Feb. 2023, doi: 10.20961/jthp.v15i2.57912.
W. Ngaha Damndja, E. S. Ngangoum, C. Saidou, and S. Mohamadou, “Formulation of three infant foods from plantain flour fortified with sesame (Sesamum indicum), Soya bean (Glycine max) and cashew nut (Anacardium occidentale L.),” Food Chemistry Advances, vol. 3, p. 100313, Dec. 2023, doi: 10.1016/J.FOCHA.2023.100313.
D. Chen, Y. Shu, J. Chen, and X. Cao, “Preparation and in vitro bioactive evaluation of cashew-nut proteins hydrolysate as a potential source of anti-allergy peptides,” J Food Sci Technol, vol. 58, no. 10, p. 3780, Oct. 2021, doi: 10.1007/S13197-020-04838-Z.
P. P.-V. del Mercado, L. Mojica, and N. Morales-Hernández, “Protein Ingredients in Bread: Technological, Textural and Health Implications,” Foods, vol. 11, no. 16, p. 2399, Aug. 2022, doi: 10.3390/FOODS11162399.
H. A. R. Suleria, C. J. Barrow, and F. R. Dunshea, “Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels,” Foods 2020, Vol. 9, Page 1206, vol. 9, no. 9, p. 1206, Sep. 2020, doi: 10.3390/FOODS9091206.
M. Wei, M. Tang, L. Wang, X. Cheng, Y. Wu, and J. Ouyang, “Endogenous bioactive compounds of naked oats (Avena nuda L.) inhibit α-amylase and α-glucosidase activity,” LWT, vol. 149, p. 111902, Sep. 2021, doi: 10.1016/J.LWT.2021.111902.
DOI: http://dx.doi.org/10.36722/sst.v10i1.3290
Refbacks
- There are currently no refbacks.
LP2M (Lembaga Penelitian dan Pengembangan Masyarakat)
Universitas AL-AZHAR INDONESIA, Lt.2 Ruang 207
Kompleks Masjid Agung Al Azhar
Jl. Sisingamangaraja, Kebayoran Baru
Jakarta Selatan 12110
This work is licensed under CC BY 4.0