CFD Simulation and Statistical Analysis of Experimental Designs for Blood Flow in T-Junction Vessels
Abstract
The blood vessel area that has the greatest chance of atherosclerotic plaque deposition is the bifurcation zone (branching) in the carotid artery. The non-Newtonian fluid of blood has the characteristics of a shear-thinning fluid. Computational Fluid Dynamics (CFD) simulation is used in this study to analyse hemodynamic in carotid artery flow with variations of vessel geometry. The branching geometry of the arteries is represented by a T-junction model which is the ideal simplified blood vessel geometry model to exhibit the most common behaviour in arterial bifurcations. The geometry of the T branch is varied into 4 different combinations of diameter size. Thus, the 2k factorial experimental design method is also used to investigate the effect of the inflow and outflow domain sizes on the response variables in the form of velocity values, Wall Shear Stress (WSS), and Oscillatory Shear Index (OSI). The results of this simulation can greatly help medical scientists to more easily predict areas that have the potential to form atherosclerotic plaques in the circulatory system.
Keywords - Atherosclerotic Plaque, Blood Vessel, Computational Fluid Dynamics Non-Newtonian Fluid, 2k Factorial Method.
Full Text:
PDFReferences
M. Renganathan, “CFD simulation of non-Newtonian fluid flow in arterial stenoses with surface irregularities,” World Acad. Sci. Eng. andTechnology, vol. 73, pp. 957–962, 2011.
R. Chhabra, “Non-Newtonian Fluids: An Introduction,” Rheol. Complex Fluids, 2010, doi: 10.1007/978-1-4419-6494-6_1.
A. Chen, A. A. Basri, N. Bin Ismail, and K. A. Ahmad, “The Numerical Analysis of Non-Newtonian Blood Flow in a Mechanical Heart Valve,” Processes, vol. 11, no. 1, 2023, doi: 10.3390/pr11010037.
J. Newman, “Hemodynamic,” in Encyclopedia of Behavioral Medicine, M. D. Gellman and J. R. Turner, Eds. New York, NY: Springer New York, 2013, pp. 955–957. doi: 10.1007/978-1-4419-1005-9_1267.
N. Kumar, A. Khader, R. Pai, S. Khan, and K. Prakashini, “Computational fluid dynamic study on effect of Carreau: Yasuda and Newtonian blood viscosity models on hemodynamic parameters,” J. Comput. Methods Sci. Eng., vol. 19, pp. 1–13, 2018, doi: 10.3233/JCM-181004.
M. F. Rabbi, F. S. Laboni, and M. T. Arafat, “Computational analysis of the coronary artery hemodynamics with different anatomical variations,” Informatics Med. Unlocked, vol. 19, p. 100314, 2020, doi: https://doi.org/10.1016/j.imu.2020.100314.
S. S. Shibeshi and W. E. Collins, “The Rheology of Blood Flow in a Branched Arterial System.,” Appl. Rheol., vol. 15, no. 6, pp. 398–405, 2005, doi: 10.1901/jaba.2005.15-398.
C. Dianita, R. Piemjaiswang, and B. Chalermsinsuwan, “CFD simulation and statistical experimental design analysis of core annular flow in T-junction and Y-junction for oil-water system,” Chem. Eng. Res. Des., vol. 176, pp. 279–295, 2021, doi: 10.1016/j.cherd.2021.10.011.
R. Piemjaiswang, Y. Ding, Y. Feng, P. Piumsomboon, and B. Chalermsinsuwan, “Effect of transport parameters on atherosclerotic lesion growth: A parameter sensitivity analysis.,” Comput. Methods Programs Biomed., vol. 199, p. 105904, Feb. 2021, doi: 10.1016/j.cmpb.2020.105904.
T. Yurata, P. Piumsomboon, and B. Chalermsinsuwan, “Effect of contact force modeling parameters on the system hydrodynamics of spouted bed using CFD-DEM simulation and 2k factorial experimental design,” Chem. Eng. Res. Des., vol. 153, pp. 401–418, 2020, doi: https://doi.org/10.1016/j.cherd.2019.10.025.
D. Zhao, N. Han, E. Goh, J. Cater, and A. Reinecke, “Chapter 2 - 3D-printed miniature Savonious wind harvester,” in Wind Turbines and Aerodynamics Energy Harvesters, D. Zhao, N. Han, E. Goh, J. Cater, and A. Reinecke, Eds. Academic Press, 2019, pp. 21–165. doi: https://doi.org/10.1016/B978-0-12-817135-6.00002-8.
T. Asakura and T. Karino, “Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries.,” Circ. Res., vol. 66, no. 4, pp. 1045–1066, Apr. 1990, doi: 10.1161/01.res.66.4.1045.
V. Carvalho, D. Pinho, R. A. Lima, J. C. Teixeira, and S. Teixeira, “Blood Flow Modeling in Coronary Arteries: A Review,” Fluids, vol. 6, no. 2, 2021, doi: 10.3390/fluids6020053.
R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Wiley, 2011. [Online]. Available: https://books.google.co.id/books?id=F6MJeRe2POUC
P. Basavaraja et al., “Wall Shear Stress And Oscillatory Shear Index Distribution In Carotid Artery With Varying Degree Of Stenosis: A Hemodynamic Study,” J. Mech. Med. Biol., vol. 17, no. 02, p. 1750037, 2017, doi: 10.1142/S0219519417500373.
T. Sochi, “Fluid Flow at Branching Junctions,” Int. J. Fluid Mech. Res., vol. 42, pp. 59–81, 2015, doi: 10.1615/InterJFluidMechRes.v42.i1.50.
R. E. Klabunde, Cardiovascular Physiology Concepts, vol. 3. 2018. [Online]. Available: http://www.cvphysiology.com/index.html
M. Ameenuddin and M. Anand, “Effect of angulation and Reynolds number on recirculation at the abdominal aorta-renal artery junction,” Artery Res., vol. 21, pp. 1–8, 2018, doi: https://doi.org/10.1016/j.artres.2017.11.007.
M. Toloui, B. Firoozabadi, and M. S. Saidi, “A numerical study of the effects of blood rheology and vessel deformability on the hemodynamics of carotid bifurcation,” Sci. Iran., vol. 19, no. 1, pp. 119–126, 2012, doi: https://doi.org/10.1016/j.scient.2011.12.008.
J. Hashemi, B. Patel, Y. S. Chatzizisis, and G. S. Kassab, “Study of Coronary Atherosclerosis Using Blood Residence Time.,” Front. Physiol., vol. 12, p. 625420, 2021, doi: 10.3389/fphys.2021.625420.
DOI: http://dx.doi.org/10.36722/sst.v10i1.2874
Refbacks
- There are currently no refbacks.
LP2M (Lembaga Penelitian dan Pengembangan Masyarakat)
Universitas AL-AZHAR INDONESIA, Lt.2 Ruang 207
Kompleks Masjid Agung Al Azhar
Jl. Sisingamangaraja, Kebayoran Baru
Jakarta Selatan 12110
This work is licensed under CC BY 4.0