Process Assurance Capability Analysis Based on Capability Process, Detection Process Capabilities and Irregular Condition Actions in Automotive Industry

Muhammad Miftahul Abid(1), Tri Wisudawati(2),


(1) Institute Technology of Sumatera
(2) Universitas Jenderal Soedirman
(*) Corresponding Author

Abstract


Rail roof side is an automotive product with high quality specifications. In the manufacturing process, there are unstable process issues that cause variations in size. On the other hand, the process abnormality detection system occurs at the end of the production process, so potential defects cannot be detected during the process. This study aims to ensure stable process quality so that defective products can be detected during the manufacturing process. The quality assurance process uses an approach based on process stability score, known as Cpk. The capability of process detection devices derived from the quality control technology used, and the ability to address irregular conditions identified through human capability to take action when process abnormalities occur. Based on the calculation of process quality assurance capability, a rank value of 1.70 indicates that the quality assurance system has been achieved. This means that the process assurance status is capable of preventing and detecting process variation issues and defects from the start of the process.

KeywordsAssurance, Capability, Defect, Detection, Variation.


Full Text:

PDF

References


F. Knapp and M. Šimon, “Methodology for the Development of Production Systems in the Automotive Industry,” Teh. Glas., vol. 18, no. 3, pp. 400–409, 2024, doi: 10.31803/tg-20240502085916.

M. M. Abid, “Analisis Kestabilan Proses Manufaktur Part Body Mobil,” G-Tech J. Teknol. Terap., vol. 7, no. 2, pp. 464–473, 2023, doi: 10.33379/gtech.v7i2.2034.

M. R. Saputra, Margianto, N. Robbi, “Pengaruh Modifikasi Karburator Menjadi Injeksi Terhadap Kinerja Mesin Pada Motor Klx 150,” Ring Mech. Eng., vol. 3, no. 1, pp. 53–58, 2023. DOI : https://doi.org/10.33474/rm.v3i1.20318.

S. Butdee and K. Tangchaidee, “Prediction of the process capability for compression rubber part forming in the automotive supply chain,” J. Achiev. Mater. Manuf. Eng., vol. 124, no. 2, pp. 78–85, 2024, doi: 10.5604/01.3001.0054.7761.

S. Dudackova and K. Bicova, “Verification of process and machine capability for precision automotive production,” Ann. DAAAM Proc. Int. DAAAM Symp., vol. 30, no. 1, pp. 0962–0966, 2019, doi: 10.2507/30th.daaam.proceedings.133.

I. Perry Johnson Consulting, The international automotive quality standard executive overview. 2016. [Online]. Available: www.pjcinc.com

S. W. Hia, “Studi Literatur Lean Six Sigma dan Implementasi di Perusahaan Manufaktur Indonesia,” Media Ilm. Tek. Ind., vol. 23, no. 2, pp. 136–140, 2024. doi.org/10.20961/performa.23.2.85250.

M. M. Abid et al., “Perancangan Framework Verifikasi Quality Assurance Proses Manufaktur Menggunakan Kemampuan Deteksi Jurnal Rekayasa Sistem Industri,” vol. 2089, no. 1, pp. 31–37, 2024.

M. R. Aditya and C. Dewi, “Optimisasi Pengecekan Anomali pada Proses Job: Analisis Waktu dan Data untuk Identifikasi Anomali yang Efisien,” J. Indones. Manaj. Inform. dan Komun., vol. 5, no. 2, pp. 1819–1832, 2024, doi: 10.35870/jimik.v5i2.737.

I. A. Belyaeva, V. N. Kozlovskii, E. V. Strizhakova, and A. S. Klentak, “System Tools for Quality Assurance for Electric Vehicle Design,” Russ. Eng. Res., vol. 44, no. 9, pp. 1338–1340, 2024, doi: 10.3103/S1068798X24702058.

F. L. Huda and S. Muhimatul Khoiroh, “Analisa Pengendalian Kualitas Produk Pipa Besi pada CV. XYZ dengan Metode Statistical Quality Control (SQC),” J. Surya Tek., vol. 12, no. 1, pp. 498–508, 2025, doi: 10.37859/jst.v12i1.9396.

M. Omar and Y. Zhou, “Automotive production control, using thermal vision systems - A passive thermal imagery for process control,” SAE Int. J. Mater. Manuf., vol. 1, no. 1, pp. 279–284, 2009, doi: 10.4271/2008-01-0681.

L. A. WARDANI, “Optimasi Parameter Mesin Laser Tube Cutting Terhadap Kekasaran Permukaan Dan Laju Pemotongan Pada Square Pipe St 37 …,” no. 2654, pp. 17–21, 2024, [Online]. Available: http://repository.ppns.ac.id/5774/

H. Rosdahl, D. Aitken, M. Osborne, J. Willén, and J. Nilsson, “A New Versatile Jig for the Calibration and Validation of Force Metrics with Instrumented Paddles in Sprint Kayaking,” Sensors, vol. 24, no. 15, 2024, doi: 10.3390/s24154870.

D. Ratmananda, Y. T. Wiranti, and V. Fitratunnany Insanittaqwa, “Perancangan Model Proses Bisnis dan Standar Operasional Prosedur Pada PT XYZ Bagian Operations Department,” EQUIVA J. Math. Inf. Technol., vol. 2, no. 1, 2024. https://journal.itk.ac.id/index.php/equiva/article/view/1102.

F. Fadhlullah, S. Noya, and N. K. Putrianto, “Analysis of Pipe Water Inlet EW010 Quality Control Using Six Sigma and Failure Mode and Effect Analysis,” J. Sains dan Apl. Keilmuan Tek. Ind., vol. 4, no. 1, pp. 01–16, 2024, doi: 10.33479/sakti.v4i1.87.

S. K. Ngian and K. M. Tay, “New representations for potential failure modes and corrective actions in FMEA,” Unconv. Methods Geosci. Shale Gas Pet. 21st Century, vol. 0, pp. 79–87, 2023, doi: 10.3233/AERD230009.

N. Shabrina, D. Li, and T. Isshiki, “High Precision Fingerprint Verification for Small Area Sensor Based on Deep Learning,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E107.A, no. 1, pp. 157–168, 2024, doi: 10.1587/transfun.2022EAP1079.

H. Cai, W. Xiao, and K. Zheng, “The prediction of part thickness using machine learning in aluminum hot stamping process with partition temperature control,” Int. J. Adv. Manuf. Technol., vol. 119, no. 5–6, pp. 3891–3902, 2022, doi: 10.1007/s00170-021-08632-9.

D. I. Sumarno, Zaid Sulaiman, and Maman Suryaman, “Simulasi Perbaikan Desain Proses Pembentukan Tempa Dingin (Cold Forming) Mur M14,” J. Permadi Perancangan, Manufaktur, Mater. dan Energi, vol. 5, no. 2, pp. 78–87, 2023, doi: 10.52005/permadi.v5i2.122.

L. Scandola et al., “An inline point-tracking approach for the real-time monitoring of the free-form bending process,” Adv. Ind. Manuf. Eng., vol. 9, no. June, 2024, doi: 10.1016/j.aime.2024.100150.

J. Song, S. Kim, Z. Liu, N. N. Quang, and F. Bien, “A Real Time Nondestructive Crack Detection System for the Automotive Stamping Process,” IEEE Trans. Instrum. Meas., vol. 65, no. 11, pp. 2434–2441, 2016, doi: 10.1109/TIM.2016.2583218.

X. Dong, C. Zhang, D. Wang, Q. Guo, X. Deng, and C. Li, “Inspection of cracking in stamping parts surfaces using anomaly detection,” Eng. Appl. Artif. Intell., vol. 143, no. October 2023, p. 110006, 2025, doi: 10.1016/j.engappai.2025.110006.

P. M. S. Ramalho, R. D. S. G. Campilho, F. J. G. Silva, A. F. V. Pedroso, and R. C. M. Sales-Contini, “Productivity improvement of control cable manufacturing machine for the automotive industry,” Mech. Based Des. Struct. Mach., vol. 52, no. 12, pp. 9717–9740, 2024, doi: 10.1080/15397734.2024.2349903.

S. Ali and C. Jaqin, “Improvement and reduce risk of failure part -casting by multi-domain matrix- process failure modes and effects analysis based verband der automobilindustrie and design of experiment,” Int. J. Syst. Assur. Eng. Manag., vol. 15, no. 7, pp. 3437–3450, 2024, doi: 10.1007/s13198-024-02351-6.




DOI: http://dx.doi.org/10.36722/sst.v10i3.4041

Refbacks

  • There are currently no refbacks.


LP2M (Lembaga Penelitian dan Pengembangan Masyarakat)

Universitas AL-AZHAR INDONESIA, Lt.2 Ruang 207

Kompleks Masjid Agung Al Azhar

Jl. Sisingamangaraja, Kebayoran Baru

Jakarta Selatan 12110

Visitor

 This work is licensed under CC BY 4.0