Prediksi Peringkat Akreditasi BAN PT Program Studi Sarjana Rumpun Ilmu Komputer Menggunakan Klasifikasi Machine Learning

Budi Aribowo(1*), Budi Tjahjono(2), Gerry Firmansyah(3), Agung Mulyo Widodo(4),


(1) Universitas Esa Unggul
(2) Universitas Esa Unggul
(3) Universitas Esa Unggul
(4) Universitas Esa Unggul
(*) Corresponding Author

Abstract


Accreditation ranking is one of the causes and indicators chosen by prospective students when choosing a study program in higher education. From the data collected, only 5% of study programs in the Computer Science group have a Superior accreditation rating and an A accreditation rating in LLDikti Region III Jakarta. So it is necessary to know the factors that influence the accreditation ranking. The machine learning methodology used in this approach is K-Nearest Neighbors (KNN) and from the data obtained there are 6 factors that can be strongly suspected to influence the study program accreditation value. The four machine learning models, namely KNN, Gaussian Naïve Bayes Decision Tree and Logistic Regression, it was found that the KNN machine learning model with 2 input variables had the highest AUC value, namely 84.38%. Meanwhile, from the model simulation run by KNN machine learning, 2 input variables can produce relatively accurate prediction results. And the results of cross validation with 10 folds support the selected machine learning with an accuracy level of 80%. In general, the KNN machine learning model with 2 input variables was able to predict the accreditation rating of Study Programs, especially from the Computer Science Cluster.

Keywords – Accreditation, Area Under Curve (AUC), Department of School, Kfold Cross Validation, Machine Learning.


Full Text:

PDF

References


S. A. Makhoul, “Higher Education Accreditation, Quality Assurance, and Their Impact to Teaching and Learning Enhancement” Journal of Economic and Administrative Sciences, Vol. 35, No. 4, pp. 235-250, 2019, doi: 10.1108/JEAS-08-2018-0092

S. Iqbal, C. A. B. Taib, and M. R. Razalli, “The Effect of Accreditation on Higher Education Performance Through Quality Culture Mediation: The Perceptions of Administrative and Quality Managers” The TQM Journal. Vol. 36, No.2, pp. 572-592, 2024.

S. Alenezi et. al, “Impact of External Accreditation on Students Peformance : Insight from a Full Accreditation Cycle”, Heliyon 9, e15815, Volume 9, Issue 5, 2023.

Suyanto, “Data Mining untuk Klasifikasi dan Klasterisasi Data”, Penerbit Informatika, Bandung, Cetakan Pertama, 2019.

T. Yulianti, H. D. Fitriawan, H. Septama, I. Oktadiani, “Seleksi Fitur F-Score untuk Klasifikasi Tingkat Kesegaran Daging Sapi Lokal Menggunakan Ekstraksi Fitur Citra”, Prosiding Seminar Nasional SINTA FT UNILA, Vol. 2, ISBN: 2655-2914, 2019.

E. S. Wahyuni, “Penerapan Metode Seleksi Fitur Untuk Meningkatkan Hasil Diagnosis Kanker Payudara”m Jurnal Simetris, Vol. 7, No. 1, ISSN : 2252-4983, 2016.

W. Musu, A. Ibrahim, Heriadi, “Pengaruh Komposisi Data Training dan Testing terhadap Akurasi Algoritma C4.5”, Prosiding Seminar Ilmiah Sistem Informasi dan Teknologi Informasi, Vol. X, No. 1, Hal. 186-195, 2021.

R. T. Vulandari, “Data Mining : Teori dan Aplikasi Rapid Miner”, Penerbit Gava Media, Cetakan I, 2017.

M. Arhami dan M. Nasir, “Data Mining Algoritma dan Implementasi”, Penerbit ANDI, Yogyakarta, 2020.

Suyanto, “Data Mining Untuk Klasifikasi dan Klasterisasi Data”, Penerbit Informatika, Bandung, Cetakan Pertama, ISBN : 978-602-6232-97-7, 2019.

J. Jumana et. al. “Fake News Detection Using Python and Machine Learning”, Procedia Computer Science, 233 (2024) 763-771, 2024.

M. R. F. Nur dan S. I. Oktora, “Analisis Kurva ROC pada Model Logit Dalam Pemodelan Determinan Lansia Bekerja di Kawasan Timur Indonesia”, Indonesian Journal of Statistics and Its Application, Vol 4, No. 1, hal. 116-135. eISSN : 2599-0802, 2020.

D. W. Hosmer and S. Lemeshow, “Applied Logistics Regression”, John Wiley & Son, Second Edition, Print ISBN : 9780471356325, 2000.

K. Gajowniczek and T. Zabkowski, “Estimating the ROC Curve and Its Significance for Classification Model’s Assesment. Quantitative Methods in Economics”, Vol. XV, No. 2, p. 382-39, 2014.

D. G. Kleinbaum and M. Klein, “Logistic Regression : A Self Learning Text”, (3rd ed), New York (US), Springer Verlag, 2010.

K. H. Zou, J. O’Malley, and L. Mauri, “Receiver Operating Characteristic Analysis for Evaluating Diagnostic Test and Predictive Models”, Circulation, 115(5): 654-657, 2015.

H. Hafid, “Penerapan K-Fold Cross Validation untuk Menganalisis Kinerja Algoritma K-Nearest Neighbors pada Data Kasus Covid-19 di Indonesia”, Journal of Mathematics, Computations and Statistics, Vol. 6, No. 2, Oktober 2023.

G. V. Rossum, “Python Tutorial Release 3.7.0. Python Software Foundation”, 2018

A. M. Sequeira, D. Lousa, M. Rocha, “ProPythia : A Python Package for Protein Classification Base On Machine and Deep Learning”, Neurocomputing, Vol. 484, page 172-182, 2022.

J. S. Coelho, M. R. Machado, A. A. Sousa, “PyMLDA : A Python Open Source Code for Machine Learning Damage Assessment” Software Impactsm 19 (2024) 100628, 2024.




DOI: http://dx.doi.org/10.36722/sst.v10i2.3089

Refbacks

  • There are currently no refbacks.


LP2M (Lembaga Penelitian dan Pengembangan Masyarakat)

Universitas AL-AZHAR INDONESIA, Lt.2 Ruang 207

Kompleks Masjid Agung Al Azhar

Jl. Sisingamangaraja, Kebayoran Baru

Jakarta Selatan 12110

Visitor

 This work is licensed under CC BY 4.0