A Knowledge-Based Stress Diagnosis System Using the Certainty Factor Approach and DASS-42 Psychological Indicators

Winangsari Pradani(1), Syarifah Hani(2), Siti Rahmawati(3), Ade Jamal(4), Andi Arniaty Arsyad(5),


(1) University of Al Azhar Indonesia
(2) University of Al Azhar Indonesia
(3) University of Al Azhar Indonesia
(4) University of Al Azhar Indonesia
(5) University of Al Azhar Indonesia
(*) Corresponding Author

Abstract


Stress is a natural physiological and psychological response to everyday demands, yet chronic stress can impair cognitive functioning, emotional regulation, sleep quality, social interaction, and academic or occupational performance. Access to mental health professionals remains limited and early detection is crucial. To address this issue, this study developed a Depression, Anxiety, and Stress Scale-42 (DASS-42)–based expert system for stress diagnosis using the Certainty Factor (CF) method. A key contribution of this work is the active involvement of licensed psychologists in knowledge elicitation, rule construction, symptom weighting, and iterative validation, ensuring clinical accuracy, reliability, and interpretability. The system underwent functional, usability, and diagnostic testing. Black Box Testing confirmed full feature performance (100%), indicating strong system stability. Usability evaluation using the System Usability Scale (SUS) produced a score of 78.375 (Grade B+, “Good”), with the highest acceptance among students and employees, and lower ratings from users with limited digital literacy. Diagnostic validation using 20 test cases assessed by two certified psychologists yielded an average accuracy of 87.5%, showing strong agreement between system results and expert judgment. These findings demonstrate that CF-based reasoning effectively models clinical evaluation of 13 stress indicators from DASS-42, indicating the system’s feasibility a reliable early stress-screening tool.

Keywords— Certainty Factor, DASS-42, Expert System, Mental Health Screening, Stress Diagnosis


Full Text:

PDF

References


Megantara YD, Latipah L, Falani AZ. Pemanfaatan Metode Naïve Bayes Untuk Diagnosis Tingkat Stres Pada Mahasiswa Tingkat Akhir Berbasis Domain Expert. Spirit. 2023;15(1):74–82.

Sari Y. Aplikasi Pengukuran Tingkat Stres Pada Mahasiswa Tingkat Akhir Dengan Metode Certainty Factor. J Tek Indones. 2023;2(1):14–28.

Sahrul, Dafitri H, Sundari S. Sistem Pakar Mendeteksi Tingkat Stres Mahasiswa Harapan dalam Penyusunan Skripsi Teknik Informatika dengan menggunakan Metode Teorema Bayes. Syntax J Softw Eng Comput Sci Inf Technol. 2021;2(2):165–71.

Manoppo MW, Pitoy FF, Tampi KB. Hubungan Tingkat Stres dengan Konsumsi Alkohol pada Remaja. MAHESA MALAHAYATI Heal STUDENT J. 2021;3(6):1710–25.

Santoso NN, Maulita Y, Khair H. Sistem Pakar Diagnosa Tingkat Depresi Mahasiswa Tingkat Akhir Dengan Menggunakan Metode Certainty Factor. BIMASATI (Bulletin Multi-Disciplinary Sci Appl Technol. 2022;1(5):153–8.

Efendi I, Niswatin RK, Farida IN. Penerapan Metode Certainty Factor untuk Sistem Pakar Diagnosa Penyakit Burung Puyuh Berbasis Web. In: Seminar Nasional Inovasi Teknologi. 2020. p. 627.

Umiyati (Kemenkes). Kemenkes Beberkan Masalah Permasalahan Kesehatan Jiwa di Indonesia. 2021 Oct 7;1. Available from: https://kemkes.go.id/eng/kemenkes-beberkan-masalah-permasalahan-kesehatan-jiwa-di-indonesia

Putrama A. An Expert System for Final Students Depression Diagnosis with Handling Solutions using Certainty Factor. Universitas Islam Negeri Sultan Syarif Kasim Riau; 2020.

Iswanti S. Alat Bantu Pengidentifikasi Tingkat Stres Mahasiswa yang Sedang Mengerjakan Tugas Akhir / Skripsi. J Inform Upgris [Internet]. 2018;4(1):56–63. Available from: http://journal.upgris.ac.id/index.php/JIU/article/view/2311

Fatimah DDS, Septiana Y, Ramadhan G. Rancang Bangun Aplikasi Sistem Pakar Diagnosa Penyakit Stunting Berbasis Web Menggunakan Metode Certainty Factor. J Algoritm. 2022;19(2):547–57.

Sukatma RS, Voutama A, Mayasari R. Sistem Pakar Deteksi Down Syndrome pada Balita Menggunakan Dempster Shafer dengen Penelusuran Forward Chaining Rianti. J Ilm Wahana Pendidik. 2022;08(23):400–14.

Kurniawan E, Nofriadi N, Nata A. Penerapan System Usability Scale (Sus) Dalam Pengukuran Kebergunaan Website Program Studi Di Stmik Royal. J Sci Soc Res. 2022;5(1):43.

Karista Kafka T, Badrul M. Analisa Usability Pada Aplikasi Human Resource Hira Menggunakan Metode System Usability Scale Dan Use Questionnaire. J Ilm Inform. 2024;12(01):22–30.




DOI: http://dx.doi.org/10.36722/psn.v5i1.5018

Refbacks

  • There are currently no refbacks.