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Abstract – In Indonesia, Alzheimer’s disease has emerged as a critical public health priority. This 

neurodegenerative disorder is characterized by the gradual erosion of memory, linguistic capabilities, 

and problem-solving skills resulting from irreversible neuronal damage. Magnetic Resonance Imaging 

(MRI) is commonly used for early diagnosis; however, manual interpretation of MRI scans is time-

consuming and subject to inter-observer variability among medical professionals. Recent advances in 

artificial intelligence have enabled automated analysis of MRI images for Alzheimer’s disease detection, 

yet many existing approaches rely on deep learning architectures with high computational complexity. 

To address this limitation, this study proposes a lightweight deep convolutional network based on 

EfficientNetV2 for Alzheimer’s disease classification using brain MRI images. Data augmentation 

techniques, including random rotation, affine transformation, horizontal and vertical flipping and 

normalization are applied to enhance model generalization. Two EfficientNetV2 variants, 

EfficientNetV2_s and EfficientNetV2_m, are evaluated and compared using accuracy, precision, recall, 

and F1-score metrics. Experimental results demonstrate that EfficientNetV2_s achieves superior 

performance, attaining an accuracy, precision, recall, and F1-score of approximately 0.90, while 

EfficientNetV2_m achieves corresponding values of approximately 0.81, indicating lower generalization 

capability. These results confirm that the smaller EfficientNetV2_s model provides more accurate and 

reliable classification performance despite its reduced computational complexity. 
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INTRODUCTION 

 

ne of the most urgent public health issues is 

dementia, which has gained significant 

attention in international study. It is typified by a 

multifaceted, gradual loss of cognitive abilities 

brought on by biological injury to the central 

nervous system. Millions of people worldwide suffer 

with Alzheimer's disease, the most prevalent kind of 

dementia. Due to damage to neurons in certain brain 

areas, Alzheimer's disease is characterized by a 

gradual decline in memory, language, problem-

solving skills and other cognitive capacities [1]. 

After the age of 60, the prevalence of Alzheimer's 

disease in the US doubles every five years, rising 

from around 1% in those between the ages of 60 and 

64 to almost 40% in those 85 and older [2]. 

According to estimates, there were 1.2 million 

Alzheimer's patients in Indonesia in 2016; by 2030, 

that number is expected to increase to 2 million, and 

by 2050, it is expected to reach 4 million [3]. 

Although several therapy approaches have been 

found to decrease the course of the disease, early 

identification is still crucial to improve patient 

outcomes. Using Magnetic Resonance Imaging 

(MRI) to examine structural alterations in the brain 

is one medical strategy for early diagnosis [4]. 

 

Medical professionals can use MRI to assess, 

recognize and diagnose neurological disorders in 

order to choose the best course of therapy. However, 

because MRI interpretation is difficult, diagnosis 

results sometimes differ amongst practitioners, 

which can cause delays in managing Alzheimer's 

disease [5]. The recent modern medical methods are 

increasingly using artificial intelligence (AI)-based 

O 

mailto:sadewawicaksana@umla.ac.id


62                                      Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026 

systems to automatically evaluate brain imaging data 

in order to overcome these issues and enable earlier 

and more accurate diagnosis. AI methods have been 

used in a number of earlier research to classify 

Alzheimer's disease using MRI pictures. In order to 

examine brain slices and categorize them into three 

groups, Yadav et al. on the research suggested a 2D-

based classification method utilizing ResNet50 [6]. 

In a different work, Buvaneswari et al. showed that 

deep learning methods and pretrained models greatly 

enhance classification performance by using a 

SegNet-based deep learning methodology to 

discover local brain morphological characteristics 

[7]. Using Support Vector Machines, Random 

Forests, and Logistic Regression, Baglat et al. 

developed a hybrid machine learning framework and 

found that deep learning techniques produce better 

classification accuracy [8]. Additionally, with an 

accuracy of up to 99%, El-Assy et al. developed a 

modified Convolutional Neural Network (CNN) 

architecture for Alzheimer's disease classification 

and early detection. Nevertheless, the evaluation was 

limited to overall accuracy, without presenting a 

confusion matrix or class-specific performance 

metrics [9]. Austin et al, applying ConvNeXT for 

identifying Alzheimer's disease from brain MRI 

images, on the findings exposes the accuracy 75% 

and demonstrates the results performance on the 

confusion matrix, however on this study, the 

difficulty is that the model design requires a large 

amount of computational resources [10]. 

 

The majority of current research uses deep learning 

architectures, which demand significant computer 

resources, despite these encouraging outcomes. In 

order to enable implementation on systems with 

limited resources, lightweight deep learning has 

evolved as an alternative paradigm that stresses 

fewer model parameters, lower latency, decreased 

memory usage and enhanced energy efficiency [11]. 

Shahriar et al studied the comparative analysis of 

lightweight deep learning models for memory-

constrained devices, it shows that EfficientNetV2-s 

is one the model lightweight and the results shows 

that EfficientNetV2 have the highest accuracy than 

the other lightweight deep learning models [12].  

EfficientNet basically is a well-known lightweight 

design that uses the Mobile Inverted Bottleneck 

Convolution (MBConv) block, which was first 

presented in MobileNetV2. By reversing the 

traditional bottleneck structure found in topologies 

like ResNet, this design greatly lowers computing 

complexity. Furthermore, the Squeeze-and-

Excitation (SE) module improves channel-wise 

feature representation with little computational cost, 

leading to better accuracy with effective resource 

use.  

 

EfficientNetV2 is used in this study to classify 

Alzheimer's disease. EfficientNetV2 has performed 

well in a variety of non-medical applications, 

including conventional food image classification 

[13], mango leaf disease detection [14] and weather 

classification [15]. However, it has also performed 

well in medical applications, including brain tumor 

classification [16], breast cancer classification [17] 

and diabetic retinopathy detection [18]. The primary 

improvement in the EfficientNetV2 model lies in the 

architectural redesign of its building blocks, 

specifically the substitution of regular MBConv 

blocks with Fused Inverted Residual Blocks (Fused-

MBConv) to increase training efficiency. The 

proposed method will assist physicians in analyzing 

MRI images more efficiently, accelerating early 

diagnosis, and enhancing clinical judgment for the 

management of Alzheimer's disease. 

 

 

METHOD 

 

Research Stages 

 

 
Figure 1. Research Flow Diagram 

 

This study takes a methodological approach, 

beginning with a thorough assessment of similar past 

works, followed by an examination of the 

architectural models offered in earlier research. The 

procedure then moves on to dataset preparation, 

model training and fine tuning on the model 

architecture, and evaluation performance model of 

the EfficientNetV2 architecture. This evaluation 

assesses the proposed model's categorization 

accuracy. The whole research methodology used in 

this study is shown in Figure 1. 
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Preparation Dataset 

The Alzheimer's Dataset (4-Class Images), licensed 

by the Alzheimer's Disease Neuroimaging Initiative 

(ADNI), was utilized in this investigation [19], [20]. 

The ADNI study is a global research project that 

gathers longitudinal data from people with 

Alzheimer's disease, Mild Cognitive Impairment 

(MCI) and normal cognitive function with the goal 

of enabling early identification by MRI image 

processing. The datasets can download on this link 

https://www.kaggle.com/datasets/marcopinamonti/a

lzheimer-mri-4-classes-dataset/data.  Previous study 

on Alzheimer's disease used these databases as the 

basis for their research [21], [22]. There are four 

types of Alzheimer's disease are included in this 

dataset are Non-Demented, Very Mild Demented, 

Mild Demented and Moderate Demented. The MRI 

brain scans are displayed as 2D image slices. The 

Clinical Dementia Rating (CDR) scale, which 

indicates the degree of cognitive impairment in 

afflicted persons, is the source of the illness 

designations. The collection has 6,400 photos in 

total, all of which have a consistent resolution of 208 

× 176 pixels. There are 3,200 non-demented photos, 

2,240 very mildly demented images, 896 mildly 

demented images and 64 moderately demented 

images in the class distribution. 

 

 
Figure 2. Alzheimer Images on Each Class 

 

The illustration image of each class can be showed 

on the Figure 2. The dataset for this study is separated 

into two subsets are training data and testing data. To 

guarantee consistency, the data is split at an  

60:20:20 ratio for training, validation and testing, 

utilizing the scikit-learn package and a fixed random 

state of 42. Based on this ratio, the datasets are 

divided into 3,840 samples are allotted for training, 

1,280 for validation and 1,280 for testing. 

Furthermore, to make the picture classification 

process easier, one-hot encoding is performed to 

each class labels. 

 

 

 
Figure 3. Visualization Data Augmentation 

 

After dividing the dataset into training, validation 

and test sets, data augmentation is used on the 

training data to increase model generalization and 

decrease overfitting. This phase is very crucial in 

Alzheimer's disease classification, as MRI datasets 

are frequently restricted and unbalanced. In keeping 

with past research, the augmentation pipeline 

includes both horizontal and vertical flipping to 

promote training variation and resilience [22]. Given 

that Alzheimer's disease causes worldwide and 

essentially symmetric brain structural alterations, 

the classification job does not need rigid anatomical 

orientation, making flip-based augmentation 

appropriate for this application. In addition to 

flipping, additional geometric modifications are 

used, including random rotation (±15°) to allow for 

head position fluctuation and random affine scaling 

https://www.kaggle.com/datasets/marcopinamonti/alzheimer-mri-4-classes-dataset/data
https://www.kaggle.com/datasets/marcopinamonti/alzheimer-mri-4-classes-dataset/data
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(0.9-1.1) without translation to maintain anatomical 

alignment. To achieve steady optimization, input 

photos are normalized with a mean of 0.5 and a 

standard deviation of 0.5. Overall, the augmentation 

approach includes random rotation, affine 

transformation, horizontal and vertical flipping (p = 

0.5), and normalization. Figure 3 depicts graphic 

examples of data augmentation approaches.  

 

Training and Fine Tuning Architecture 

The architecture proposed in this study is based on 

EfficientNetV2, which a new family of CNNs and it 

produces a higher performance accuracy and have a 

short period of time for training. The work employed 

a mix of training-aware neural architecture search 

and scaling to enhance both training speed and 

parameter efficiency rather than the previous 

versions [23]. The foundation of EfficientNetV2 is 

made up of two key building blocks: Fused-

MBConv and MBConv (Figure 4). MBConv 

(Mobile Inverted Bottleneck Convolution) is used 

because of its lightweight design and computational 

effectiveness in image processing jobs. The phrase 

inverted bottleneck refers to a channel design in 

which the number of channels is initially increased 

and subsequently decreased in the final 

convolutional layer. In contrast, the Fused-MBConv 

block is used to speed up training and inference, 

especially for input resolutions ranging from tiny to 

medium. Fused-MBConv combines the MBConv 

block's initial 1×1 and 3×3 depthwise convolutions 

into a single 3×3 operation [24]. 

 

 
Figure 4. Differentiations MBConv and Fused-MBConv 

This study employed with two EfficientNetV2 

models, EfficientNetV2_s and EfficientNetV2_m. 

Figure 5 and Figure 6 depict the design model for 

each model, which does partial fine tuning by 

modifying the final classification layer. Postfix s and 

m on that words denotes the size and scale of the 

model architecture. In EfficientNetV2, the suffix ‘S’ 

and ‘M’ denote ‘Small’ and ‘Medium’ variants 

relative to the model family, containing 

approximately 22 million and 54 million parameters, 

respectively. Although these models are not 

lightweight enough for direct deployment on ultra-

low-power edge devices, they are significantly more 

parameter-efficient than conventional deep CNN 

architectures commonly used in medical image 

analysis, such as ResNet101 or DenseNet201. 

Therefore, EfficientNetV2-S and EfficientNetV2-M 

can be considered resource-efficient models suitable 

for clinical environments with limitations 

computational resources, such as hospital 

workstations or centralized inference servers. 

 

 
Figure 5. Model EfficientNetV2_s with Partial Fine 

Tuning 

 

 
Figure 6. Model EfficientNetV2_m with Partial Fine 

Tuning 
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The model that has already been initiated will be 

added with the image input. The image input size for 

the models is 208x176 and more fine adjustment is 

available at the end of the layer, which includes a 

thick layer with four classes. The model additionally 

employs Adam Optimizer with hyperparameter 

learning to decrease error throughout the training 

process. Hyperparameter loss function on this study 

also implemented with cross entropy loss to 

improving model convergence and classification 

performance. Detail informations about number 

hyperparameters used can be see on the Table 1. 

 
Table 1. Hyperparameter Configurations 

Hyperparameter Value 

Learning Rate 0.001 

Epoch 128 

Batch Size 8 

 

Evaluation Architecture 

This study assessment procedure is based on the 

values of True Positive (TP), True Negative (TN), 

False Positive (FP) and False Negative (FN) as 

determined by the confusion matrix. The confusion 

matrix is a performance evaluation tool that shows 

the number of properly and mistakenly categorized 

samples for each class by comparing actual labels to 

model predictions. TP is the number of real positive 

samples accurately predicted as positive by the 

model, whereas TN represents the number of actual 

negative samples correctly forecasted as negative. 

FP is the number of actual negative samples that 

were improperly forecasted as positive, whereas FN 

represents the number of actual positive samples that 

were incorrectly projected as negative. The four 

values will be used for calculate precision, recall, 

and f1-score of the models which the formula as you 

can see on the formula (1-3).  

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (1) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (2) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
   (3) 

 

 

RESULTS AND DISCUSSIONS 

 

The model obtained during the training phase with 

the assistance of runpod to tailor GPU use gained 

some information and pytorch for the library. The 

training and validation results of the model are 

presented in the form of training and validation loss, 

recall, precision and F1-score curves. 

 
Figure 7. Validation Loss on Each Epoch 

 

The Figure 7 gives information about validation loss 

during training with data validation each epoch by 

comparing between model EfficientNetV2_s with 

model EfficientNetV2_m. The training and 

validation loss curves are used to analyze the 

learning behavior and generalization capability of 

the proposed model throughout the training process. 

Overall, both models exhibit a decreasing trend in 

validation loss, showing that generalization 

performance improves as training continues. 

However, EfficientNetV2-s consistently achieves 

lower validation loss and has more steady 

convergence than EfficientNetV2-m. In the early 

epochs, both models exhibit noteworthy swings, 

with EfficientNetV2-m exhibiting a high validation 

loss spike, indicating initial instability and 

sensitivity to model complexity. Although the value 

spikes are still present during training, 

EfficientNetV2-s shows reduced variability and 

reaches stability more gradually.  

 

 
Figure 8. Validation Precision on Each Epoch 

 

 
Figure 9. Validation Recall on Each Epoch 
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Figure 10. Validation F1-Score on Each Epoch 

 

In the other hand, Figure 8, Figure 9 and Figure 10 

present a validation performance comparison of 

EfficientNetV2-m and EfficientNetV2-s in terms of 

precision, recall and F1-score across training epochs. 

The precision, recall and F1-score curves are used to 

completely assess the model's classification 

performance throughout training and validation. 

Precision assesses the model's ability to properly 

identify positive predictions while reducing false 

positives, recall indicates the model's sensitivity in 

finding real positive situations and the F1-score 

gives a balanced assessment by combining precision 

and recall. Overall, both models show continuous 

improvements in all assessment measures, 

demonstrating that classification performance is 

improving with time. However, EfficientNetV2-s 

regularly beats EfficientNetV2-m on all measures 

and has a more steady convergence tendency. In the 

early phases of training, both models exhibit 

considerable variations, notably in precision and 

recall, indicating initial instability in feature 

learning. As training advances, EfficientNetV2-s 

converges more gradually and attains greater 

precision values, suggesting more confidence in 

good predictions and fewer false positives. 

Simultaneously, EfficientNetV2-s achieves greater 

recall with fewer sudden dips, indicating superior 

sensitivity in detecting affirmative cases.  

 

 
Figure 11. Confusion Matrix EfficientNetV2_s 

The F1-score reflects the combined benefit of 

enhanced precision and recall, as EfficientNetV2-s 

regularly produces higher values with lower 

variation than EfficientNetV2-m. In the last epochs, 

EfficientNetV2-s achieves F1-scores better than 

0.90, but EfficientNetV2-m remains lower and 

demonstrates more performance fluctuations. These 

findings suggest that the smaller model strikes a 

better compromise between sensitivity and 

specificity, resulting in improved generalization on 

previously encountered data. Overall, the data show 

that EfficientNetV2-s provides higher and more 

robust validation performance despite its reduced 

model complexity for classify the data validation 

during training phase. 

 

 
Figure 12. Confusion Matrix EfficientNetV2_m 

 

While Figure 11 and Figure 12 shows the confusion 

matrices produced by evaluating the proposed model 

on the test dataset. The matrices show the 

distribution of true versus predicted labels and give 

information on class-specific performance and 

misclassification tendencies. The initial confusion 

matrix shows robust class discriminating throughout 

all dementia stages. The Non Demented class has a 

high true positive rate (595 samples) and low 

misclassification to adjacent classes. The Very Mild 

Demented class is likewise mainly properly 

diagnosed (386 samples) with little 

misunderstanding with Non Demented, indicating a 

slight clinical shift between the two stages. 

Similarly, the Mild Demented class performs well 

(160 accurate predictions) with little 

misclassification largely to Very Mild Demented. 

Importantly, the Moderate Demented class is 

properly categorized, with all samples accurately 

recognized.  
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In contrast, the second confusion matrix shows 

decreased class separability. Although Non 

Demented predictions remain quite high (533 

samples), misclassification as Very Mild Demented 

grows significantly. Confusion between Very Mild 

Demented and nearby classes worsens, and the Mild 

Demented class becomes less accurate, with 

frequent reclassification into Very Mild Demented. 

Notably, the model does not reliably detect any 

Moderate Demented patients in this setting. Overall, 

the results show that the first model configuration 

provides more balanced and clinically reliable 

performance across all dementia stages, particularly 

Moderate Demented, whereas the second model 

causes significant confusion between adjacent 

severity levels, emphasizing the importance of 

robust feature representation for accurate dementia 

staging. 

 

Besides that, Table 2 highlights the test performance 

comparison of model EfficientNetV2-s and model 

EfficientNetV2-m using common evaluation 

criteria. As demonstrated in the table, 

EfficientNetV2-s consistently beats EfficientNetV2-

s across all measures, with the performance matrix 

precision, recall, and F1-score values of about 0.90. 

In comparison, EfficientNetV2-m achieves poorer 

performance, with precision, and recall values of 

0.81 and an F1-score of 0.80. The higher F1-score 

produced by EfficientNetV2-s suggests a better 

balanced trade-off between precision and recall, 

implying greater resilience and generalization 

capabilities on previously encountered test data. 

 
Table 2. Result Precision, Recall and F1-Score 

Metrics EfficientNetV2_s EfficientNetV2_m 

Precision 0.90 0.81 

Recall 0.90 0.81 

F1-Score 0.90 0.80 

Accuracy 0.90 0.81 

 

Furthermore, to provide a comprehensive 

comparison between EfficientNetV2 and other 

architectures, this study incorporates accuracy as an 

additional evaluation metric and compares the 

results with those obtained using the ConvNeXT 

model. The results of the comparison model 

accuracy can be see on the Table 3.  

  
Table 3. Comparison of Model Accuracy 

Model Accuracy 

EfficientNetV2-s 0.90 

EfficientNetV2-m 0.81 

ConvNeXT [10] 0.75 

 

In addition, Table 4 presents the class-wise precision 

(P), recall (R) and F1-score (F1) for model 

EfficientNetV2_s and model EfficientNetV2_m 

across four Alzheimer’s disease categories are Mild 

Demented, Moderate Demented, Non Demented, 

and Very Mild Demented. Based on that table, 

EfficientNetV2_s demonstrates superior and more 

consistent performance across all classes compared 

to EfficientNetV2_m. For the Mild Demented class, 

EfficientNetV2_s has a high accuracy (0.94), recall 

(0.92) and F1-score (0.93), showing great 

discriminative ability. In contrast, the architecture 

EfficientNetV2_m performs worse, notably in recall 

(0.83), resulting in an F1-score of 0.86. Similar 

tendencies can be seen in the Moderate Demented 

class, where EfficientNetV2_s achieves an F1-score 

of 0.88, surpassing EfficientNetV2_m, which has an 

F1-score of 0.77. 

 
Table 4. Precision, Recall and F1-Score on each Class 

Class 
EfficientNetV2_s EfficientNetV2_m 

P R F1 P R F1 

Mild Demented 0.94 0.92 0.93 0.89 0.83 0.86 

Moderate 

Demented 
0.90 0.86 0.88 0.71 0.84 0.77 

Non Demented 0.82 0.89 0.85 0.81 0.70 0.75 

Very Mild 

Demented 
0.44 1 0.61 0 0 0 

 

Notably, in the Very Mild Demented class, 

EfficientNetV2_s has perfect recall (1.00) but low 

precision (0.44), resulting in an F1-score of 0.61. 

This pattern indicates that, while the model correctly 

detects all Very Mild Demented patients, it also 

generates a significant number of false positives. In 

contrast, EfficientNetV2_m fails to accurately 

identify this class, resulting in 0 precision, recall, 

and F1-score, most likely owing to class imbalance 

and inadequate feature representation. Overall the 

class-wise analysis shows that EfficientNetV2_s has 

more robust and reliable classification performance, 

particularly for early-stage Alzheimer's disease 

detection, whereas EfficientNetV2_m struggles with 

minority classes, demonstrating the effectiveness of 

lightweight architectures in imbalanced medical 

imaging datasets.        

 
Table 5. Comparison Parameter Size and FLOPs Models 

Model Parameters FLOPs 

EfficientNetV2-s 22 M 8.8 G 

EfficientNetV2-m 54 M 24 G 

ConvNeXT Tiny 28 M 4.5 G 

ConvNeXT Small 50 M 8.7 G 

ConvNeXT Base 89 M 15.4 G 

 



68                                      Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026 

After analyzing the performance of EfficientNetV2, 

this study further compares the parameter sizes of 

the models and FLOPs (Floating Point Operations 

per Second) to identify the architecture with the 

lowest number of parameters, thereby ensuring 

computational efficiency. Table 5 shows a 

comparison of model complexity between the 

EfficientNetV2 and ConvNeXT variations in terms 

of parameter count and floating-point operations 

(FLOPs). Among the models tested, 

EfficientNetV2-s has the smallest parameter size (22 

million) and requires 8.8 GFLOPs, indicating its 

lightweight architecture. In contrast, the architecture 

of EfficientNetV2-m, with 54 million parameters 

and 24 GFLOPs, is the most computationally costly 

model in the comparison. The ConvNeXT variations 

show differing trade-offs between parameter size 

and computational cost. ConvNeXt-Tiny has 28 

million parameters and a processing need of 4.5 

GFLOPs, but ConvNeXt-Small and ConvNeXt-

Base gradually rise in complexity, reaching 50 

million parameters with 8.7 GFLOPs and 89 million 

parameters with 15.4 GFLOPs, respectively.       

Overall, this comparison shows that EfficientNetV2-

s provides the best mix of model compactness and 

computational efficiency, with a low parameter 

count and mild FLOPs. Although ConvNeXt-Tiny 

uses fewer FLOPs, EfficientNetV2-s achieves better 

classification performance with fewer parameters, 

making it more suited for deployment in resource-

constrained and clinical situations where accuracy 

and efficiency are essential. 

 

 

CONCLUSIONS 

 

The objective of this study is to evaluate the 

effectiveness of EfficientNetV2 in classifying 

Alzheimer’s disease. EfficientNetV2 is an improved 

version of its predecessor, EfficientNet, designed to 

achieve high classification performance while 

enabling faster data processing during the training 

phase. Although EfficientNetV2 is a lightweight 

model commonly deployed on resource-constrained 

devices, the experimental results demonstrate its 

strong capability in Alzheimer’s disease 

classification, achieving competitive performance 

compared to other models that require significantly 

larger computational resources.  

 

This study has various obstacles due to a lack of data 

for specific labels, resulting in an unbalanced 

dataset. This imbalance has a substantial impact on 

the performance of the model being evaluated. The 

findings reveal a better performance matrix for the 

model EfficientNetV2-s compared to the model 

EfficientNetV2-m, which has a large layer and 

performs poorly. The proposed model has to be 

improved and refined further. As a result, future 

research may include additional image enhancement 

techniques, such as Contrast Limited Adaptive 

Histogram Equalization (CLAHE), to improve class 

separability, as well as data balancing methods like 

the Synthetic Minority Over-sampling Technique 

(SMOTE), to address dataset imbalance. 
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