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Abstract — In Indonesia, Alzheimer’s disease has emerged as a critical public health priority. This
neurodegenerative disorder is characterized by the gradual erosion of memory, linguistic capabilities,
and problem-solving skills resulting from irreversible neuronal damage. Magnetic Resonance Imaging
(MRI) is commonly used for early diagnosis; however, manual interpretation of MRI scans is time-
consuming and subject to inter-observer variability among medical professionals. Recent advances in
artificial intelligence have enabled automated analysis of MRI images for Alzheimer’s disease detection,
yet many existing approaches rely on deep learning architectures with high computational complexity.
To address this limitation, this study proposes a lightweight deep convolutional network based on
EfficientNetV2 for Alzheimer’s disease classification using brain MRI images. Data augmentation
techniques, including random rotation, affine transformation, horizontal and vertical flipping and
normalization are applied to enhance model generalization. Two EfficientNetV2 variants,
EfficientNetV2 s and EfficientNetV2 m, are evaluated and compared using accuracy, precision, recall,
and Fl-score metrics. Experimental results demonstrate that EfficientNetV2 s achieves superior
performance, attaining an accuracy, precision, recall, and Fl-score of approximately 0.90, while
EfficientNetV2_m achieves corresponding values of approximately 0.81, indicating lower generalization
capability. These results confirm that the smaller EfficientNetV2 s model provides more accurate and
reliable classification performance despite its reduced computational complexity.
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INTRODUCTION

ne of the most urgent public health issues is

dementia, which has gained significant
attention in international study. It is typified by a
multifaceted, gradual loss of cognitive abilities
brought on by biological injury to the central
nervous system. Millions of people worldwide suffer
with Alzheimer's disease, the most prevalent kind of
dementia. Due to damage to neurons in certain brain
areas, Alzheimer's disease is characterized by a
gradual decline in memory, language, problem-
solving skills and other cognitive capacities [1].
After the age of 60, the prevalence of Alzheimer's
disease in the US doubles every five years, rising
from around 1% in those between the ages of 60 and
64 to almost 40% in those 85 and older [2].
According to estimates, there were 1.2 million

Alzheimer's patients in Indonesia in 2016; by 2030,
that number is expected to increase to 2 million, and
by 2050, it is expected to reach 4 million [3].
Although several therapy approaches have been
found to decrease the course of the disease, early
identification is still crucial to improve patient
outcomes. Using Magnetic Resonance Imaging
(MRI) to examine structural alterations in the brain
is one medical strategy for early diagnosis [4].

Medical professionals can use MRI to assess,
recognize and diagnose neurological disorders in
order to choose the best course of therapy. However,
because MRI interpretation is difficult, diagnosis
results sometimes differ amongst practitioners,
which can cause delays in managing Alzheimer's
disease [5]. The recent modern medical methods are
increasingly using artificial intelligence (Al)-based
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systems to automatically evaluate brain imaging data
in order to overcome these issues and enable earlier
and more accurate diagnosis. Al methods have been
used in a number of earlier research to classify
Alzheimer's disease using MRI pictures. In order to
examine brain slices and categorize them into three
groups, Yadav et al. on the research suggested a 2D-
based classification method utilizing ResNet50 [6].
In a different work, Buvaneswari et al. showed that
deep learning methods and pretrained models greatly
enhance classification performance by using a
SegNet-based deep learning methodology to
discover local brain morphological characteristics
[7]. Using Support Vector Machines, Random
Forests, and Logistic Regression, Baglat et al.
developed a hybrid machine learning framework and
found that deep learning techniques produce better
classification accuracy [8]. Additionally, with an
accuracy of up to 99%, El-Assy et al. developed a
modified Convolutional Neural Network (CNN)
architecture for Alzheimer's disease classification
and early detection. Nevertheless, the evaluation was
limited to overall accuracy, without presenting a
confusion matrix or class-specific performance
metrics [9]. Austin et al, applying ConvNeXT for
identifying Alzheimer's disease from brain MRI
images, on the findings exposes the accuracy 75%
and demonstrates the results performance on the
confusion matrix, however on this study, the
difficulty is that the model design requires a large
amount of computational resources [10].

The majority of current research uses deep learning
architectures, which demand significant computer
resources, despite these encouraging outcomes. In
order to enable implementation on systems with
limited resources, lightweight deep learning has
evolved as an alternative paradigm that stresses
fewer model parameters, lower latency, decreased
memory usage and enhanced energy efficiency [11].
Shahriar et al studied the comparative analysis of
lightweight deep learning models for memory-
constrained devices, it shows that EfficientNetV2-s
is one the model lightweight and the results shows
that EfficientNetV2 have the highest accuracy than
the other lightweight deep learning models [12].
EfficientNet basically is a well-known lightweight
design that uses the Mobile Inverted Bottleneck
Convolution (MBConv) block, which was first
presented in MobileNetV2. By reversing the
traditional bottleneck structure found in topologies
like ResNet, this design greatly lowers computing
complexity.  Furthermore, the Squeeze-and-
Excitation (SE) module improves channel-wise
feature representation with little computational cost,

leading to better accuracy with effective resource
use.

EfficientNetV2 is used in this study to classify
Alzheimer's disease. EfficientNetV2 has performed
well in a variety of non-medical applications,
including conventional food image classification
[13], mango leaf disease detection [14] and weather
classification [15]. However, it has also performed
well in medical applications, including brain tumor
classification [16], breast cancer classification [17]
and diabetic retinopathy detection [18]. The primary
improvement in the EfficientNetV2 model lies in the
architectural redesign of its building blocks,
specifically the substitution of regular MBConv
blocks with Fused Inverted Residual Blocks (Fused-
MBConv) to increase training efficiency. The
proposed method will assist physicians in analyzing
MRI images more efficiently, accelerating early
diagnosis, and enhancing clinical judgment for the
management of Alzheimer's disease.

METHOD

Research Stages

Start

l
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!
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Figure 1. Research Flow Diagram

This study takes a methodological approach,
beginning with a thorough assessment of similar past
works, followed by an examination of the
architectural models offered in earlier research. The
procedure then moves on to dataset preparation,
model training and fine tuning on the model
architecture, and evaluation performance model of
the EfficientNetV2 architecture. This evaluation
assesses the proposed model's categorization
accuracy. The whole research methodology used in
this study is shown in Figure 1.
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Preparation Dataset

The Alzheimer's Dataset (4-Class Images), licensed
by the Alzheimer's Disease Neuroimaging Initiative
(ADNI), was utilized in this investigation [19], [20].
The ADNI study is a global research project that
gathers longitudinal data from people with
Alzheimer's disease, Mild Cognitive Impairment
(MCI) and normal cognitive function with the goal
of enabling early identification by MRI image
processing. The datasets can download on this link
https://www.kaggle.com/datasets/marcopinamonti/a
lzheimer-mri-4-classes-dataset/data. Previous study
on Alzheimer's disease used these databases as the
basis for their research [21], [22]. There are four
types of Alzheimer's disease are included in this
dataset are Non-Demented, Very Mild Demented,
Mild Demented and Moderate Demented. The MRI
brain scans are displayed as 2D image slices. The
Clinical Dementia Rating (CDR) scale, which
indicates the degree of cognitive impairment in
afflicted persons, is the source of the illness
designations. The collection has 6,400 photos in
total, all of which have a consistent resolution of 208
x 176 pixels. There are 3,200 non-demented photos,
2,240 very mildly demented images, 896 mildly
demented images and 64 moderately demented
images in the class distribution.

Non Demented

Very Mild Demented

Moderate Demented

Mild Demented

Figure 2. Alzheimer Images on Each Class

The illustration image of each class can be showed
on the Figure 2. The dataset for this study is separated
into two subsets are training data and testing data. To

guarantee consistency, the data is split at an
60:20:20 ratio for training, validation and testing,
utilizing the scikit-learn package and a fixed random
state of 42. Based on this ratio, the datasets are
divided into 3,840 samples are allotted for training,
1,280 for wvalidation and 1,280 for testing.
Furthermore, to make the picture classification
process easier, one-hot encoding is performed to
each class labels.

Original Image

Augmented 1

Augmented 2 Augmented 3

Augmented 4 Augmented 5

Figure 3. Visualization Data Augmentation

After dividing the dataset into training, validation
and test sets, data augmentation is used on the
training data to increase model generalization and
decrease overfitting. This phase is very crucial in
Alzheimer's disease classification, as MRI datasets
are frequently restricted and unbalanced. In keeping
with past research, the augmentation pipeline
includes both horizontal and vertical flipping to
promote training variation and resilience [22]. Given
that Alzheimer's disease causes worldwide and
essentially symmetric brain structural alterations,
the classification job does not need rigid anatomical
orientation, making flip-based augmentation
appropriate for this application. In addition to
flipping, additional geometric modifications are
used, including random rotation (£15°) to allow for
head position fluctuation and random affine scaling
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(0.9-1.1) without translation to maintain anatomical
alignment. To achieve steady optimization, input
photos are normalized with a mean of 0.5 and a
standard deviation of 0.5. Overall, the augmentation
approach includes random rotation, affine
transformation, horizontal and vertical flipping (p =
0.5), and normalization. Figure 3 depicts graphic
examples of data augmentation approaches.

Training and Fine Tuning Architecture

The architecture proposed in this study is based on
EfficientNetV2, which a new family of CNNs and it
produces a higher performance accuracy and have a
short period of time for training. The work employed
a mix of training-aware neural architecture search
and scaling to enhance both training speed and
parameter efficiency rather than the previous
versions [23]. The foundation of EfficientNetV2 is
made up of two key building blocks: Fused-
MBConv and MBConv (Figure 4). MBConv
(Mobile Inverted Bottleneck Convolution) is used
because of its lightweight design and computational
effectiveness in image processing jobs. The phrase
inverted bottleneck refers to a channel design in
which the number of channels is initially increased
and subsequently decreased in the final
convolutional layer. In contrast, the Fused-MBConv
block is used to speed up training and inference,
especially for input resolutions ranging from tiny to
medium. Fused-MBConv combines the MBConv
block's initial 1x1 and 3x3 depthwise convolutions
into a single 33 operation [24].

«— “—
| 1
Conv 1x1 Conv 1x1
f 1
SE SE
|
Depthwise Conv 3x3
|
Conv 1x1 Conv 3x3
MBConv Fused-MBConv—

Figure 4. Differentiations MBConv and Fused-MBConv

This study employed with two EfficientNetV2
models, EfficientNetV2 s and EfficientNetV2 m.
Figure 5 and Figure 6 depict the design model for
each model, which does partial fine tuning by
modifying the final classification layer. Postfix s and
m on that words denotes the size and scale of the
model architecture. In EfficientNetV2, the suffix ‘S’
and ‘M’ denote ‘Small’ and ‘Medium’ variants
relative to the model family, containing
approximately 22 million and 54 million parameters,
respectively. Although these models are not
lightweight enough for direct deployment on ultra-
low-power edge devices, they are significantly more
parameter-efficient than conventional deep CNN
architectures commonly used in medical image
analysis, such as ResNetlO0l or DenseNet201.
Therefore, EfficientNetV2-S and EfficientNetV2-M
can be considered resource-efficient models suitable
for clinical environments with limitations
computational resources, such as hospital
workstations or centralized inference servers.

Output Shape

Tuning
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F 3 ba
Params size
Estima To B): 450.42

Figure 6. Model EfficientNetV2 m with Partial Fine
Tuning
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The model that has already been initiated will be
added with the image input. The image input size for
the models is 208x176 and more fine adjustment is
available at the end of the layer, which includes a
thick layer with four classes. The model additionally
employs Adam Optimizer with hyperparameter
learning to decrease error throughout the training
process. Hyperparameter loss function on this study
also implemented with cross entropy loss to
improving model convergence and classification
performance. Detail informations about number
hyperparameters used can be see on the Table 1.

Table 1. Hyperparameter Configurations

Hyperparameter Value
Learning Rate 0.001
Epoch 128
Batch Size 8

Evaluation Architecture

This study assessment procedure is based on the
values of True Positive (TP), True Negative (TN),
False Positive (FP) and False Negative (FN) as
determined by the confusion matrix. The confusion
matrix is a performance evaluation tool that shows
the number of properly and mistakenly categorized
samples for each class by comparing actual labels to
model predictions. TP is the number of real positive
samples accurately predicted as positive by the
model, whereas TN represents the number of actual
negative samples correctly forecasted as negative.
FP is the number of actual negative samples that
were improperly forecasted as positive, whereas FN
represents the number of actual positive samples that
were incorrectly projected as negative. The four
values will be used for calculate precision, recall,
and f1-score of the models which the formula as you
can see on the formula (1-3).

. . TP
precision = —— @)
recall = —~ (2)

TP+FN
F1 — Score = 2 % precision * recall (3)

precision + recall

RESULTS AND DISCUSSIONS

The model obtained during the training phase with
the assistance of runpod to tailor GPU use gained
some information and pyforch for the library. The
training and validation results of the model are
presented in the form of training and validation loss,
recall, precision and F1-score curves.

Walidation Loss: EfficientNetva-M vs. Efficienthetva-5

Epach

Figure 7. Validation Loss on Each Epoch

The Figure 7 gives information about validation loss
during training with data validation each epoch by
comparing between model EfficientNetV2 s with
model EfficientNetV2 m. The training and
validation loss curves are used to analyze the
learning behavior and generalization capability of
the proposed model throughout the training process.
Overall, both models exhibit a decreasing trend in
validation loss, showing that generalization
performance improves as training continues.
However, EfficientNetV2-s consistently achieves
lower wvalidation loss and has more steady
convergence than EfficientNetV2-m. In the early
epochs, both models exhibit noteworthy swings,
with EfficientNetV2-m exhibiting a high validation
loss spike, indicating initial instability and
sensitivity to model complexity. Although the value
spikes are still present during training,
EfficientNetV2-s shows reduced variability and
reaches stability more gradually.

Validation Precision: EfficientNetV2-M vs. EfficientNetV2-S

o m a0 o0 a0 0o 120
Epach

Figure 8. Validation Precision on Each Epoch

Validation Recall: EfficientNetV2-M vs. EfficientNetV2-S

—— EfficientNetv2-M Recall

0 0 80 100 120

Figure 9. Validation Recall on Each Epoch
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Validation F1-Score: EficientNetv2-M vs. EfficientNetVa-5
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Figure 10. Validation F1-Score on Each Epoch

In the other hand, Figure 8, Figure 9 and Figure 10
present a validation performance comparison of
EfficientNetV2-m and EfficientNetV2-s in terms of
precision, recall and F1-score across training epochs.
The precision, recall and F1-score curves are used to
completely assess the model's classification
performance throughout training and validation.
Precision assesses the model's ability to properly
identify positive predictions while reducing false
positives, recall indicates the model's sensitivity in
finding real positive situations and the Fl-score
gives a balanced assessment by combining precision
and recall. Overall, both models show continuous
improvements in all assessment measures,
demonstrating that classification performance is
improving with time. However, EfficientNetV2-s
regularly beats EfficientNetV2-m on all measures
and has a more steady convergence tendency. In the
early phases of training, both models exhibit
considerable variations, notably in precision and
recall, indicating initial instability in feature
learning. As training advances, EfficientNetV2-s
converges more gradually and attains greater
precision values, suggesting more confidence in
good predictions and fewer false positives.
Simultaneously, EfficientNetV2-s achieves greater
recall with fewer sudden dips, indicating superior
sensitivity in detecting affirmative cases.

Confusion Matrix on Test Data
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Figure 11. Confusion Matrix EfficientNetV2 s

The Fl-score reflects the combined benefit of
enhanced precision and recall, as EfficientNetV2-s
regularly produces higher values with lower
variation than EfficientNetV2-m. In the last epochs,
EfficientNetV2-s achieves Fl-scores better than
0.90, but EfficientNetV2-m remains lower and
demonstrates more performance fluctuations. These
findings suggest that the smaller model strikes a
better compromise between sensitivity and
specificity, resulting in improved generalization on
previously encountered data. Overall, the data show
that EfficientNetV2-s provides higher and more
robust validation performance despite its reduced
model complexity for classify the data validation
during training phase.

Confusion Matrix on Test Data
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Figure 12. Confusion Matrix EfficientNetV2 m

While Figure 11 and Figure 12 shows the confusion
matrices produced by evaluating the proposed model
on the test dataset. The matrices show the
distribution of true versus predicted labels and give
information on class-specific performance and
misclassification tendencies. The initial confusion
matrix shows robust class discriminating throughout
all dementia stages. The Non Demented class has a
high true positive rate (595 samples) and low
misclassification to adjacent classes. The Very Mild
Demented class is likewise mainly properly
diagnosed (386 samples) with little
misunderstanding with Non Demented, indicating a
slight clinical shift between the two stages.
Similarly, the Mild Demented class performs well
(160 accurate predictions) with little
misclassification largely to Very Mild Demented.
Importantly, the Moderate Demented class is
properly categorized, with all samples accurately
recognized.
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In contrast, the second confusion matrix shows
decreased class separability. Although Non
Demented predictions remain quite high (533
samples), misclassification as Very Mild Demented
grows significantly. Confusion between Very Mild
Demented and nearby classes worsens, and the Mild
Demented class becomes less accurate, with
frequent reclassification into Very Mild Demented.
Notably, the model does not reliably detect any
Moderate Demented patients in this setting. Overall,
the results show that the first model configuration
provides more balanced and clinically reliable
performance across all dementia stages, particularly
Moderate Demented, whereas the second model
causes significant confusion between adjacent
severity levels, emphasizing the importance of
robust feature representation for accurate dementia
staging.

Besides that, Table 2 highlights the test performance
comparison of model EfficientNetV2-s and model
EfficientNetV2-m using common evaluation
criteria. As demonstrated in the table,
EfficientNetV2-s consistently beats EfficientNetV2-
s across all measures, with the performance matrix
precision, recall, and F1-score values of about 0.90.
In comparison, EfficientNetV2-m achieves poorer
performance, with precision, and recall values of
0.81 and an F1-score of 0.80. The higher F1-score
produced by EfficientNetV2-s suggests a better
balanced trade-off between precision and recall,
implying greater resilience and generalization
capabilities on previously encountered test data.

Table 2. Result Precision, Recall and F1-Score

Metrics EfficientNetV2 s EfficientNetV2 m
Precision 0.90 0.81
Recall 0.90 0.81
F1-Score 0.90 0.80
Accuracy 0.90 0.81

Furthermore, to provide a comprehensive
comparison between EfficientNetV2 and other
architectures, this study incorporates accuracy as an
additional evaluation metric and compares the
results with those obtained using the ConvNeXT
model. The results of the comparison model
accuracy can be see on the Table 3.

Table 3. Comparison of Model Accuracy

Model Accuracy
EfficientNetV2-s 0.90
EfficientNetV2-m 0.81

ConvNeXT [10] 0.75

In addition, Table 4 presents the class-wise precision
(P), recall (R) and Fl-score (F1) for model
EfficientNetV2 s and model EfficientNetV2 m
across four Alzheimer’s disease categories are Mild
Demented, Moderate Demented, Non Demented,
and Very Mild Demented. Based on that table,
EfficientNetV2 s demonstrates superior and more
consistent performance across all classes compared
to EfficientNetV2_ m. For the Mild Demented class,
EfficientNetV2 s has a high accuracy (0.94), recall
(0.92) and Fl-score (0.93), showing great
discriminative ability. In contrast, the architecture
EfficientNetV2_m performs worse, notably in recall
(0.83), resulting in an Fl-score of 0.86. Similar
tendencies can be seen in the Moderate Demented
class, where EfficientNetV2_s achieves an F1-score
of 0.88, surpassing EfficientNetV2 m, which has an
F1-score of 0.77.

Table 4. Precision, Recall and F1-Score on each Class

EfficientNetV2 s  EfficientNetV2 m
P R F1 P R F1

Mild Demented 0.94 0.92 093 0.89 0.83 0.86

Class

Moderate 0.90 0.86 088 071 084 0.77
Demented
Non Demented 0.82 089 0.8 0.81 0.70 0.75
Very Mild
Doy e 044 1 061 0 0 0

Notably, in the Very Mild Demented class,
EfficientNetV2 s has perfect recall (1.00) but low
precision (0.44), resulting in an F1-score of 0.61.
This pattern indicates that, while the model correctly
detects all Very Mild Demented patients, it also
generates a significant number of false positives. In
contrast, EfficientNetV2 m fails to accurately
identify this class, resulting in O precision, recall,
and F1-score, most likely owing to class imbalance
and inadequate feature representation. Overall the
class-wise analysis shows that EfficientNetV2_s has
more robust and reliable classification performance,
particularly for early-stage Alzheimer's disease
detection, whereas EfficientNetV2_m struggles with
minority classes, demonstrating the effectiveness of
lightweight architectures in imbalanced medical
imaging datasets.

Table 5. Comparison Parameter Size and FLOPs Models

Model Parameters FLOPs
EfficientNetV2-s 22 M 8.8G
EfficientNetV2-m 54 M 24 G
ConvNeXT Tiny 28 M 45G
ConvNeXT Small 50 M 8.7G
ConvNeXT Base 89 M 154 G
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After analyzing the performance of EfficientNetV2,
this study further compares the parameter sizes of
the models and FLOPs (Floating Point Operations
per Second) to identify the architecture with the
lowest number of parameters, thereby ensuring
computational efficiency. Table 5 shows a
comparison of model complexity between the
EfficientNetV2 and ConvNeXT variations in terms
of parameter count and floating-point operations
(FLOPs). Among  the models  tested,
EfficientNetV2-s has the smallest parameter size (22
million) and requires 8.8 GFLOPs, indicating its
lightweight architecture. In contrast, the architecture
of EfficientNetV2-m, with 54 million parameters
and 24 GFLOPs, is the most computationally costly
model in the comparison. The ConvNeXT variations
show differing trade-offs between parameter size
and computational cost. ConvNeXt-Tiny has 28
million parameters and a processing need of 4.5
GFLOPs, but ConvNeXt-Small and ConvNeXt-
Base gradually rise in complexity, reaching 50
million parameters with 8.7 GFLOPs and 89 million
parameters with 154 GFLOPs, respectively.
Overall, this comparison shows that EfficientNetV2-
s provides the best mix of model compactness and
computational efficiency, with a low parameter
count and mild FLOPs. Although ConvNeXt-Tiny
uses fewer FLOPs, EfficientNetV2-s achieves better
classification performance with fewer parameters,
making it more suited for deployment in resource-
constrained and clinical situations where accuracy
and efficiency are essential.

CONCLUSIONS

The objective of this study is to evaluate the
effectiveness of EfficientNetV2 in classifying
Alzheimer’s disease. EfficientNetV2 is an improved
version of its predecessor, EfficientNet, designed to
achieve high classification performance while
enabling faster data processing during the training
phase. Although EfficientNetV2 is a lightweight
model commonly deployed on resource-constrained
devices, the experimental results demonstrate its
strong capability in  Alzheimer’s  disease
classification, achieving competitive performance
compared to other models that require significantly
larger computational resources.

This study has various obstacles due to a lack of data
for specific labels, resulting in an unbalanced
dataset. This imbalance has a substantial impact on
the performance of the model being evaluated. The
findings reveal a better performance matrix for the

model EfficientNetV2-s compared to the model
EfficientNetV2-m, which has a large layer and
performs poorly. The proposed model has to be
improved and refined further. As a result, future
research may include additional image enhancement
techniques, such as Contrast Limited Adaptive
Histogram Equalization (CLAHE), to improve class
separability, as well as data balancing methods like
the Synthetic Minority Over-sampling Technique
(SMOTE), to address dataset imbalance.
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