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Abstract — DNA can be viewed as a symbolic sequence with patterns that vary across species. This study
explores DNA sequences through two complementary approaches: species classification using simple
machine learning methods and transformation of DNA into musical note representations. In the first task,
DNA sequences from five organisms with different evolutionary distances are represented using 3-mer
and 6-mer features. These k-mers form a vocabulary whose frequency counts are converted into feature
vectors. Random Forest (RF) and Support Vector Machine (SVM) models are then applied for five-class
classification. Using an 80:20 train-test split and 10-fold cross-validation, the SVM model achieved
average accuracies above 0.90 for 3-mer features, with low standard deviation, indicating stable
performance. In the second approach, 3-mer motifs are mapped to musical notes to generate species-
based musical patterns. The resulting musical representations exhibit distinct structural differences
across species, reflecting variations in underlying sequence composition. Overall, the results demonstrate
that 3-mer features are effective for species discrimination and that musical transformation provides an

alternative and intuitive way to visualize DNA sequence patterns.
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INTRODUCTION

NA serves as the fundamental blueprint of all

living organisms. Its sequence acts as an
instruction set that governs cellular development and
biological function. Although composed of only four
nucleotides, each DNA sequence is highly specific,
and even small variations can lead to distinct
structural or functional outcomes in cells and
tissues[1]. For example, a gene expressed in eye
cells encodes instructions that guide the formation of
ocular tissue rather than any unrelated structure. This
functional specificity arises from the ordered
arrangement of nucleotides, making DNA both
structurally  constrained and mathematically
interpretable.

Because of its inherent uniqueness, DNA enables
species identification through computational and
statistical analysis. Particularly, machine learning
methods have become central tools for modelling the
high-dimensional patterns embedded in nucleotide
sequences. For instance, a Random Forest (RF)

classifier was used to model precursor micro RNA
data from 16 species [2]. The results demonstrated
that prediction accuracy is influenced by
evolutionary distance, with performance ranging
from approximately 80% to 93% when
distinguishing Homo sapiens from members of the
Brassicaceae family. Their study relied on k-mer
representations, specifically 1-mers, 2-mers, and 3-
mers, as numerical features, noting that larger k-
mers rapidly expand the feature space without
providing proportional improvements in accuracy.
Moreover, k-mers are well suited for analyzing large
sequencing  datasets  because  they  are
computationally efficient, require less memory and
still capture important biological information [3].

Another approach can be seen in [4], who used a
multiclass  Support Vector Machine (SVM)
combined with the N-best algorithm to classify
microbial marker clades. It evaluated k-mer sizes of
10, 20, 30, 40 and 50 and used the N-best algorithm
to address overlap and redundancy between feature
sets. Across 17 species, the method achieved over
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28% accuracy for the top-1 prediction and over
91% accuracy for the top-10 predictions in both
training and testing phases. These findings reinforce
that k-mers remain a widely wused feature
representation for machine learning-based genomic
classification. In addition, as sequencing
technologies continue to advance, research efforts
need to improve k-mer counting methods to handle
the growing size of sequencing datasets more
effectively [5].

Research [4] also noted that many other machine
learning and statistical methods are commonly used
in genomic analysis, such as BLAST, Hidden
Markov Model (HMM) and others. Beyond these
traditional approaches, deep learning methods such
as CNNs and LSTMs have also been used to classify
DNA sequences directly without relying on the k-
mer  representation,  achieving  acceptable
performance even for the sequences originate from
the same species[6].

Interestingly, music also contains structured patterns
that can be described through pitch relationships,
interval sequences and rhythmic repetition[7]. These
elements resemble feature extraction in data
analysis, where patterns are represented in numerical
or symbolic form and examined systematically. To
the best of our knowledge, although informal online
sources have experimented with mapping DNA
sequences to musical notes, there is limited peer-
reviewed work that examines this idea within a
quantitative ~ or  computational  framework.
Therefore, this study proposes a dual consecutive
approach. First, machine learning techniques are
applied to classify DNA sequences from different
species using k-mer-based representations. This step
serves as a validation of the selected data and feature
representations. Second, the DNA sequences are
transformed into melodic patterns based on amino
acid polarity, with the aim of exploring whether the
resulting musical structures reflect the underlying
characteristics of the DNA sequences. Through this
approach, the study provides an alternative way to
visualize DNA using musical representations.

METHODOLOGY

This study uses DNA sequence data obtained from
5 organisms representing different biological
domains: human (Homo sapiens), a vertebrate
animal (Mus musculus), a model plant (Arabidopsis
thaliana), bacteria (Escherichia coli) and virus
(Human adenovirus). These organisms were

intentionally selected to represent clearly distinct
biological groups. Two types of exploration were
conducted on the data are a classification task and a
simple musical pattern analysis as shown in figure
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Figure 1. Research Method Flowchart

Data

The DNA sequences were obtained from the
National Center for Biotechnology Information
(NCBI). We used Coding Sequences (CDS) and the
list of accession IDs is provided in Supplementary
Material. For each of the five species, 100 sequences
were collected in FASTA format. All sequences
were trimmed to a uniform length of 500 base pairs
to standardize the input data. In addition, one
representative 500-base-pair sequence from each
species was later translated into its corresponding
amino acid chain and subsequently mapped to
musical notes using a pentatonic scale to generate
melody patterns for comparison.

Method

All DNA sequences were downloaded using Python
with the Biopython library to ensure reproducibility.
Two trimming strategies were applied to obtain 500-
base-pair input sequences. In the first scenario, the
sequence was taken starting from the first base pair.
In the second scenario, the starting position was
randomized to introduce variation. This randomized
trimming was intended to introduce positional
variation and to evaluate the robustness of the
classification approach with respect to sequence
starting positions.



Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026 87

To prepare the data for classification task, the
trimmed DNA sequences were transformed into
numerical features using the k-mer method. A k-mer
represents a subsequence of length k extracted from
a longer nucleotide sequence [8]. This study used 3-
mers and 6-mers with a sliding window of size 3,
allowing the capture of local and slightly longer-
range sequence patterns. The resulting k-mers were
converted into feature vectors using the Bag-of-
Words technique. Bag-of-Words is a text
vectorization method that ignores order or grammar
and counts the frequency of unique “words” (in this
case, k-mers) in the sequence [9]. These frequency
vectors served as inputs for the classification models
in the classification investigation. Since DNA
consist of four nucleotides (A, T, G, and C), the
feature vector size is 43 = 64 for 3-mer s and 4° for
6-mer.

With the feature vectors constructed, two
mathematical classification models, Random Forest
(RF) and Support Vector Machine (SVM), were
implemented. Random Forest can be viewed as an
ensemble method that constructs a collection of
decision functions, where each function corresponds
to a decision tree trained on a randomly sampled
subset of the observations and feature space. As
described in [10], each tree is generated using an
independently sampled random vector with an
identical distribution, ensuring statistical diversity
across the ensemble. The final classifier is obtained
by aggregating the individual tree outputs, typically
through majority voting, which approximates an
ensemble decision function. This aggregation
reduces variance and improves generalization,
forming the basis of the RF model shown
conceptually in figure 2.
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Figure 2. Random Forest Model Constructed from
Multiple Decision Trees

On the other hand, SVM model constructs a
separating hyperplane that divides the data into two

classes[11]. The optimal hyperplane is obtained by
solving an optimization problem that determines the
parameters w and b. A simple two-dimensional
linear example is shown in figure 3.
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Figure 3. Support Vector Machine Algorithm Illustration

The 3-mer and 6-mer of DNA features were then
used in both RF and SVM models and their results
were compared. The experiments were designed by
splitting the dataset into 80% for training and 20%
for testing. Model performance was evaluated using
accuracy, precision, recall and Fl-score for each
species. To ensure that the model is more stable and
accurate, it is further evaluated using 10-fold cross-
validation. The standard deviation and confidence
interval are also calculated to measure how
consistent the accuracy is across the different folds.

All experiments were conducted using a fixed
random seed to ensure reproducibility. The random
state parameter was set to 42 for both Support Vector
Machine (SVM) and Random Forest (RF) models.
Hyperparameter tuning was performed using
GridSearchCV with cross validation on the training
data.

For the Random Forest classifier, the evaluated
parameters included the number of trees
(n_estimators = {100, 200}), maximum tree depth
(max_depth = {10, 20, None}), minimum samples
required to split an internal node (min samples split
= {2, 5, 10}) and class weight ({balanced, None}).
For the Support Vector Machine classifier, the
regularization parameter C ({0.1, 1, 10, 100}), kernel
coefficient gamma ({scale, auto, 0.1, 0.01}) and
kernel type ({linear, rbf}) were optimized. The
optimal hyperparameters were selected based on
classification accuracy obtained during cross
validation and were used to train the final models.
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As the second type of exploration, a simple musical
pattern analysis was conducted to visualize structural
pattern of DNA sequences. For this purpose, the
extracted 3-mers were treated as codons and
converted into amino acids according to the rules
shown in figure 4 (with thymine replaced by uracil).
The resulting amino acid sequences were then
mapped to musical notes in the pentatonic scale, as
listed in table 1.

It is important to note that 3-mers were treated as
codon-like units and mapped to amino acids for the
purpose of symbolic representation rather than
biological translation. Although coding sequences
(CDS) were used in this study, the translation step
does not aim to identify functional proteins or
biologically valid Open Reading Frames (ORFs).
Instead, a fixed reading frame starting from the first
nucleotide of each selected sequence was applied
consistently to ensure a uniform and reproducible
mapping across all species. This approach allows the
3-mer structure of DNA sequences to be
systematically transformed into amino acid symbols,
which are subsequently used for musical mapping and
pattern visualization.
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Figure 4. Amino Acids Table [12]

Table 1. Pentatonic Scale Mapping of Amino Acids

Musical .
Property 4 1 ino Acids Note Ratio-
Group nale
Range
Hydro- Glycine, Alanine, C3-A3  Lower
phobic and Valine, Leucine, pitch
nonpolar  Isoleucine

Musical .
Property 4 1ino Acids Note ~ latio-
Group Range nale
Methionine, C4-G4
Phenylalanine,

Tryptophan, Proline

Polar (un- Serine, Threonine, A4-AS5 Middle
charged) Cysteine, Tyrosine, range
Asparagine,
Glutamine
Polar Aspartic Acid, C6 — A6  Higher
(charged) Glutamic acid, pitch
Lysine, Arginine,
Histidine
Start codon Methionine C4 Middle C
note
Stop codon UAG, UAA, UGA C7 E;tgeh“t

A musical scale is not simple to define. It is essentially
a sequence of notes arranged by specific intervals,
which represent the frequency differences between
consecutive tones[13]. One familiar example is the
major scale: do, re, mi, fa, sol, la, ti, do. The pentatonic
scale, as the name suggests, consists of five notes: do,
re, mi, sol, and la, and is widely used due to its
simplicity and ease of improvisation[14]. This five-
note structure provides a clearer way to identify
recurring patterns in DNA  sequences, thereby
facilitating qualitative comparison of sequence
characteristics across different species.

To show the pattern formed by these musical notes,
the notes were then converted into a melody using the
MIDIFile library in python by playing these notes
next to each other at a certain speed and then turning
that into a midi. A melody in essence is a sequence of
musical notes that exhibit complex dependencies in
different time scales [15]. The generated midi file was
then put in FL Studio, a digital audio workstation
(DAW), where the sound characteristics were refined
and a backing track was added to facilitate clearer
auditory comparison of the resulting melodies.

RESULT AND DISCUSSION

DNA Sequence Classification Task

The performance of two classification scenarios is
evaluated, Scenario I, in which each 500-base-pair
DNA segment is taken directly from the first 500 bp
of the corresponding NCBI sequence and Scenario
II, in which the starting position for each 500 bp
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segment is randomized. figure 5 displays the first
two human DNA sequences obtained using both
scenarios. As shown in the figure, the resulting
sequences from the two scenarios begin with
different bases or nucleotides. For example, in the
first sequence, Scenario I starts with ATACCC...,
whereas Scenario II starts with CTACGC.... These
conditions therefore reflect that the extracted
sequences accommodate the introduced positional
variation arising from different sequence starting
positions.

(XX ] human_100seq_500bp_scenariol.fasta

>500.1,PX403006,1ND1

ATACCCATGGCCAACCTCCTACTCCTCATTGTACCCATTCTAATCGCAATGGCATTCCTAATGL TTACCGAACGAAMATTCTAGGCTATATACAACTAC
GCAMGGCCCCAACGTTGTAGGCCCCTACGGGCTACTACAACCCTTCOCTGACGCCATARACTCTTCACCARAGAGC CCCTAAAACCCGCCACATCTAC
CATCACCCTCTACATCACCGCCCCGACCTTAGCTCTCACCATCGCTCTTCTACTATGAACCCCCCTCCCCATACCCAACCCCCTGOTTAACCTCAACCTA
GGCCTCCTATTTATTCTAGCCACCTCTAGCCTAGCCGTTTACT CAATCCTCTGATCAGGGTGAGCATCAAACTCAAACTACGCCCTGATCGGCGCACTGL
GAGCAGTAGCCCAAACAATCTCATATGAAGTCACCCTAGCCATCATTCTACTATCAACATTACTAATAAGTGGCTCCTTTAACCTCTCCACCCTTATCAC
>5£0._2_PA403006,1_ND2

ATTAATCCCCTGGCCCAACCCGTCATCTACTCTACCATCTTTGCAGGCACACTCATCACAGLGC TAAGCTCGLACTGATTTTTTACCTGAGTAGGCCTAG
AATAMCATGCTAGCTTTTATTCCAGTTCTAACCAAMAAAAT AAACCCTCOTTCCACAGARGC TGCCATCAAGTATTTCCTCACGCAAGCAACCGCATC
CATAATCCTTCTAATAGCTATCCTCTTCAACAATATACTCTCCGGACAATGAAC CATAACCAATACTACCAATCAATACTCATCATTAATAATCATAATG
GCTATAGCAATAAAACTAGGAATAGCCCCCTTTCACTTCTGAGTCCCAGAGGTTACCCAAGGCACCCCTCTGACATCCGGCCTGCTTCTTCTCACATGAC
AMARACTAGCCCCCATCTCAATCATATACCARATCTCTCCCTCACTAARCGTARGCCTTCTCCTCACTCTCTCAATCTTATCCATCATAGCAGGCAGTTG

(XX ] human_100seq_500bp_scenario2.fasta

>5£0.1_PA403006,1ND1

CTACGCAAAGGCCCCAACGTTGTAGGC CCCTACGGGCTACTACAACCCTTCGCTGACGCCATAAAACTCTTCACCAAAGAGCCCCTAAMACCCGCCACAT
CTACCATCACCCTCTACATCACCGCCCCGACCTTAGCTCTCACCATCGCTCTTCTACTATGAACCCCCCTCCCCATACCCAACCCCCTGGTTAACCTCAA
CCTAGGCCTCCTATTTATTCTAGCCACCTCTAGCCTAGCCGTTTACTCAATCCTCTGATCAGGGTGAGCATCAAACTCARACTACGCCCTGATCGGCGCA
CTGCGAGCAGTAGCCCAAACAATCTCATATGAAGTCACCCTAGCCATCATTCTACTATCAACATTACTAATAAGTGGCTCCTTTAACCTCTCCACCCTTA
TCACAACACAAGAACACCTCTGATTACTCCTGCCATCATGACCCTTGGCCATAATATGATTTATCTCCACACTAGCAGAGACCAACCGAACCCCCTTCGA
>5e0_2_P403006,1_ND2

AATGGCTATAGCAATAAAACTAGGAATAGCCCCCTTTCACTTCTGAGTCCCAGAGGTTACCCARGECACCCCTCTGACATCCGGCCTGCTTCTTCTCACA
TGACAAAAACTAGCCCCCATCTCAATCATATACCARATCTCTCCCTCACTAAACGTAAGCCTTCTCCTCACTCTCTCAATCTTATCCATCATAGCAGGCA
GTTGAGGTGGATTAAAC CAAACCCAGE TACGCARAATCTTAGCATACTCCTCAATTACCCACATAGGATGAATAATAGCAGTTCTACCGTACAACCCTAA
CATAACCATTCTTAATCTAACTATTTATATTATCCTAACTACTACCGCATTCCTACTACTCAACTTAAACTCCAGCACCACGACCCTACTACTATCTCGC
ACCTGAAACAAGCTAACATGACTAACACCCTTAATTCCATCCACCCTCCTCTCCCTAGGAGGCCTGLCCCCGCTAACCGECTTTTTGLCCAAATGGGCCA

Figure 5. First Two Human DNA Sequences Extracted
Using Fixed and Randomized Trimming

Using k-mer sizes of k = 3 and k = 6 with a
stride of 3 resulted in 166 3-mers and 83 6-mers,
respectively, for each 500 bp sequence. For example,
for Sequence 1 under Scenario I in Figure 5, the 3-
mer representation yields the list {ATA, CCC, ATG,
..., ATC}, whereas the 6-mer representation yields
the list {ATACCC, CCCATG, ATGGCC, ...,
CTTATC}. The remaining two nucleotides at the
end of the sequence were discarded because they do
not form a complete k-mer under the selected stride.
After converting the k-mers from all five species into
feature vectors using the Bag-of-Words technique,
Random Forest (RF) and Support Vector Machine
(SVM) model were trained for a five-class
classification task using an 80:20 train-test data split.

Performing  hyperparameter  tuning  using
GridSearchCV on the cleaned data from Scenario I,
the optimal parameters for each model were
obtained as follows. For k = 3, the Random Forest
model achieved the best performance with 100 trees,
a maximum depth of 10 and minimum samples split
of 10, without class weighting. Meanwhile, the SVM
model performed best using an RBF kernel with C =
10 and gamma set to scale. For k = 6, the optimal
Random Forest configuration consisted of 200 trees,
no depth limitation, minimum samples split of 2 and

balanced class weights. In contrast, the SVM model
achieved its best performance with a linear kernel, C
= 0.1, and gamma set to scale. These tuned
parameters were subsequently used in all
classification experiments to ensure fair and
consistent model evaluation.

Table 2 and 3 present the classification performance
metrics for RF and SVM models obtained using
Scenario 1.

Table 2. Performance of RF Model Using Scenario I
Metrics performance

k-mer
Feature Class Acc. Prec. Rec. F1-
Score
Animal 0.96 1.00 1.00 1.00
k=3 Bacteria 096 095 1.00 098
Human 0.96 1.00 1.00 1.00
Plant 0.96 090 1.00 0.95
Virus 0.96 1.00 0.80 0.89
k=6 Animal 0.94 0.95 095 0.95

Bacteria 0.94 095 095 0.95
Human 094 095 095 0095
Plant 094 091 1.00 095
Virus 094 094 085 0.89

Table 3. Performance of SVM Model Using Scenario [
Metrics performance
kemer = 0y F1-
Feature Acc. Prec. Rec.
Score
k =3 Animal 098 1.00 1.00 1.00
Bacteria 0.98 1.00 1.00 1.00
Human 098 1.00 1.00 1.00
Plant 098 1.00 095 0.97
Virus 098 094 1.00 0.97

k=6 Animal 095 094 0385 0389
Bacteria 0.95 095 1.00 0.98
Human 095 090 095 0.93
Plant 095 095 1.00 0.98
Virus 095 1.00 095 0.97

Based on tables 2 and 3, SVM model achieves
overall slightly better performance for both 3-mers
and 6-mers classification, outperforming RF model.
Furthermore, the 3-mer features yield a higher
accuracy than the 6-mer features.

For Scenario II, table 4 and 5 show that SVM model
consistently achieves higher accuracy than RF model.
Similar to the previous scenario, the 3-mer feature
again provide better metric performance.
Additionally, the overall classification performance
in Scenario II slightly decreases, which may be due
to the broader positional variation introduced by
random sequence starting positions. Nevertheless,
the performance metrics across all species remain



90 Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026

acceptable (all above 0.70), suggesting that the
model maintains reliable classification performance.

Table 4. Performance of RF Model Using Scenario II
Metrics performance
k-mer Class F1-
feature Acc. Prec. Rec.
Score
k=3 Animal 095 095 095 0.95
Bacteria 095 091 1.00 0095
Human 095 095 095 0.95
Plant 095 1.00 095 0097
Virus 095 095 090 0.92

k=6 Animal 079 073 080 0.76
Bacteria 0.79 0.74 0.85 0.79
Human 0.79 085 0.85 0.85
Plant 0.79 0.83 0.75 0.79
Virus 0.79 0.82 0.70 0.76

Table 5. Performance of SVM Model Using Scenario 11
Metrics performance
kemer g F1-
feature Acc. Prec. Rec.
Score
k=3 Animal 0.97 1.00 095 097
Bacteria 0.97 095 095 0.95
Human 097 095 1.00 0.98
Plant 097 1.00 1.00 1.00
Virus 097 095 095 0095

k=6 Animal 093 094 0.75 0.83
Bacteria 093 095 1,00 0.98
Human 093 095 095 0.95
Plant 093 0.83 1.00 0091
Virus 093 1.00 095 097

Although an initial 80:20 train-test split was used,
this approach may be sensitive to data partitioning.
Therefore, 10-fold cross-validation was employed
to obtain a more reliable assessment of model
performance, as presented in table 6 and 7.

Table 6. 10-Fold Cross-Validation Results for Scenario 1

Accuracy

No Fold k=3 k=6
RF SVM RF SVM
1 Fold1 0.92 0.97 0.94 0.97
2 Fold2 0.97 1.00 0.92 1.00
3 Fold3 0.97 1.00 0.94 1.00
4 Fold 4 0.94 0.97 0.94 1.00
5 Fold5 0.94 1.00 0.97 1.00
6 Fold6 0.92 1.00 0.89 0.89
7 Fold7 0.92 0.97 0.92 0.97
8 Fold8 0.94 0.97 0.92 0.94
9 Fold9 0.97 1.00 0.97 1.00
10 Fold 10 1.00 1.00 0.97 0.97
Mean 0.95 0.99 0.94 0.98
Standard 0.03 0.01 0.03 0.03

deviation

Accuracy
No Fold k=3 k=6
RF SVM RF SVM
Confidence (0.93, (0.98, (0.92, (0.95,
Interval 097) 1.00) 0.96) 1.00)

Table 7. 10-Fold Cross-Validation Results for
Scenario 11

Accuracy

No Fold k=3 k=6
RF SVM RF SVM
1 Fold1 094 098 092 096
2 Fold2 0.92 1.00 082 094
3 Fold3 0.98 1.00 092 098
4 Fold4 094 098 088 094
5 Fold5 096 098 098  0.98
6 Fold6 092 098 098 1.00
7 Fold7 090 092 0.84 0.88
8 Fold 8 0.86 092 090 0.96
9 Fold9 094 096 090 0.96
10 Fold 10 0.86 098 094 098
Mean 092 097 091 0.96
Standard 0.04 0.03 0.05 0.03

deviation

Confidence (0.90, (0.95, (0.87, (0.94,
Interval 0.95) 0.99) 0.95) 0.998)

Based on table 6, in scenario I, the classification
models achieved an average accuracy above 0.90
with relatively small standard deviations for the 3-
mer features, 0.03 for RF model and 0.01 for SVM
model. The confidence interval for RF model, (0.93,
0.97), indicates that the model accuracy consistently
falls between 93% and 97%, suggesting stable
performance. From the mean accuracy, standard
deviation values and confidence intervals, it can be
observed that SVM model performs better than RF
model and that the 3-mer features provide better
classification performance than the 6-mer features.

Furthermore, as shown in table 7, the performance
of both models slightly decreases in Scenario II.
Again, this decrease may be due to the broader
positional variation of nucleotides within sequences
of the same species. These results are consistent with
the evaluation obtained from the single train-test
split, indicating that the models remain stable and
maintain consistent performance across different
data subsets.
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DNA to Music and a Simple Musical Pattern
Analysis

As an alternative perspective for observing
differences in DNA sequence patterns across
species, the sequences are transformed into musical
notes. Based on the classification results, where the
3-mer features provide better classification
performance, the DNA sequences are transformed
into musical notes using the 3-mer strategy.
Following the mapping in table 1, each 3-mer (with
stride 3) is treated as a codon that determines a
corresponding amino acid, which is then converted
into a musical note.

Since each sequence contains 500 base pairs, a
single sequence generates 166 notes. To maintain
clarity and avoid excessive length, the melodies are
limited to the first 500 bp of one representative
sequence from each species. Specifically, we
selected one sequence per species using the first
accession ID available (PV177089.1 COX1 for
animal, CP195866.1 dnaN for bacteria,
PX403006.1 ND2 for human, BK010421.1 cox2
for plant, and MW306919.1 E1A for virus).

For example, Sequence 2 under Scenario I in figure
5 produces the 3-mer list {ATT, AAT, CCC, ...,
AGT}, which is converted into amino acids as
{Isoleucine, Asparagine, Proline, ..., Serine}. These
amino acids are then mapped to musical notes
{*A3°,°G5°,G4’, ..., ‘A4’}. Complete examples of
the resulting musical representations for human and
animal sequences are provided in table §.

Table 8. Notes generated from 500 bp of human and
animal DNA sequences

Species Notes

Human ['A3','G5,'G4",'G3", 'D3','A5', 'G4', 'E3', 'A3),
'ES', 'A4",'C5','A3', 'D4', 'D3', 'C3', 'C5", 'G3),
'A3','CS, 'D3', 'G3', 'A4', 'A4','A6', 'CT', DA,
'D4','C5','C7', 'E3', 'C3','G3', 'D6', 'A3', 'G5,
'C4,'G3', 'D3', 'D4', 'A3', 'G4', 'E3", 'G3', 'C5,
'E6', 'E6', 'A3", 'G5, 'G4', 'G6', 'A4', 'C5', ‘D6,
D3, 'D3','A3', 'E6', 'ES', 'D4', 'G3', 'C5', 'AS,
'D3','C5', 'D3', 'A4','A3','A3','G3', 'G3', 'A3,
'D3','A3','G3', 'D4', 'GS', 'G5, 'A3', 'G3', 'A4,
'C3','A5','CT','C5','A3', 'C5', 'GS', 'C5', 'CS,
'G5, 'AS', 'ES', A4, 'A4", 'G3', 'A3', 'A3, 'A3',
'C4,'D3','A3', 'D3','A3', 'E6, 'G3', 'C3', 'A3,
'D3', 'G4', 'D4', 'A6', 'D4', 'C7', 'E3, 'G4', 'DE,
'E3','C5', 'A5', 'C3', 'C5', ‘G4, 'G3, 'C5', 'A4,
'C3','G3','G3', 'G3', 'G3', 'C5', 'C7', 'A5', 'E6,
'G3', 'D3', 'G4', 'A3, 'A4", 'A3", 'A3', 'ES', 'AS',
'A3,'A4, "G4, 'A4, "G, 'GS', 'E3', 'A4, 'G3',
'G3','G3', 'C5', 'G3', 'A4', 'A3', 'G3', 'A4", 'A3,
'A3','D3', 'C3', 'A4']

Species Notes

Animal  ['C4','D4','A3,'G5','G6', 'C7, 'G3', 'D4', ‘A4,
'C5','G5', 'A6', 'E6', 'C6', 'A3", 'C3', 'C5', 'G3),
'ES','G3','G3', 'D4', 'C3, 'D3', 'C7', 'D3', 'C3',
'A3', 'E3', 'C3','C5', 'D3','G3', 'A4', 'A3', 'G3,
'A3','G6', 'D3', 'D6', 'G3', 'C3', 'AS', 'G4', 'C3',
'D3','G3', 'G3', 'C3', 'C6', 'C6, 'AS', ‘A3, ES),
'GS', 'E3,'A3', 'E3', 'C5', 'D3', 'A6', 'D3, 'D4',
'E3','A3','A3', 'D4', 'D4', 'A3', 'E3', 'A3', ‘G4,
'A3','A3', 'A3', 'C3', 'C3', 'D4', 'C3', 'GS', 'C7,
'G3', 'E3', 'G4', 'G3', 'A3, 'A3', 'C3', 'D3', ‘G4,
'C6','A3','D3', 'D4, 'G4', 'G6', 'A3', 'G5', 'G5,
'A3','A4','D4','CT', 'G3', 'G3', 'G4', 'G4', 'A4",
'D4,'G3','G3', 'G3', 'G3', 'D3', 'A4", 'Ad", 'A3),
'E3','D6', 'D3', 'C3', 'D3', 'C3', 'CS', 'C3', 'CT,
'CS', 'E3', 'ES', 'G4', 'G4', 'G3', 'D3', 'C3', 'G5,
'G3', 'D3', 'A6', 'D3', 'C3', 'D3', 'A4', 'E3', 'C6,
'G3','C5', 'A%, ‘D4, 'A4', 'G3', 'A6', 'G3', D3,
'C3, 'E3,'A4,'A4,,'A3, 'G3', 'C3', 'D3', 'A3,
'GS', 'D4', 'A3", 'C5']

The MIDI files for all species, as well as the musical
arrangement, can be accessed at the following link:
https://drive.google.com/drive/folders/1 XMJ82GCn
T-Y52-0Zocqaq0bohXKka2kG?usp=sharing.

The resulting melodies are also visualized using line
plots to provide a clearer depiction of their structural
patterns. The patterns generated from the human and
animal sequences are shown in figure 6 and 7. Both
species exhibit similar overall trends, with
hydrophobic amino acids (9 of the 20 amino acids)
appearing most frequently. In the human sequence,
however the frequency of polar uncharged amino
acids (6 of the 20 amino acids) is more balanced
relative to the hydrophobic group, while the
remaining categories appear only rarely. In contrast,
the animal sequence shows more frequent
fluctuations interval change in notes associated with
non-hydrophobic amino acids, indicating greater
variation in its amino acid composition. A direct
comparison of the note line plots for human and
animal sequences is provided in figure 8, which
highlights these differences.

Musical Pitch (Pentatonic Scale)
-

Pasition in Sequence

Figure 6. Human gene musical pattern
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Figure 7. Animal Gene Musical Pattern

Figure 8. Human and Animal Gene Musical Pattern

As for the patterns generated from the plant, bacteria
and virus sequences, the visualizations are shown in
Figure 9, 10 and 11. The frequency of charged amino
acids, which is relatively rare in human and animal
sequences, appears more balanced with hydrophobic
amino acids in these species. Although charged
amino acids make up only about 25% of all amino
acids (5 out of 20), their presence is notably more
frequent in bacteria and virus. This can be clearly
observed in Figure 10 and 11, where charged amino
acids emerge much more often compared to the
patterns seen in human and animal sequences. In
addition, extreme interval changes, reaching up to 3
octaves are more commonly found in these
sequences, reflected greater variability.
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Figure 10. Bacteria Gene Musical Pattern

in Sequence

Figure 11. Virus Gene Musical Pattern

Overall, the musical transformation provides an
alternative and intuitive way to observe differences
in DNA sequence patterns across species. By
converting nucleotide sequences into melodic
structures, variations between species can be
perceived more easily through differences in note
distribution and interval patterns. However, it is
important to emphasize that this transformation is
not intended to represent biological protein
synthesis. The 3-mer-to-amino-acid mapping was
applied using a fixed reading frame solely for
symbolic pattern transformation, not for biological
interpretation of coding regions. In addition, this
approach ignores codon degeneracy, as multiple
codons that encode the same amino acid are treated
in the same way. From the 64 possible codons, only
20 amino acids and one stop symbol are mapped to
musical notes. This simplification makes the
representation easier to apply, but it also reduces the
biological detail of the method. Therefore, this
approach should be considered a pattern
visualization technique rather than a biologically
precise model.

CONCLUSION

This study presents two related explorations of DNA
sequences. First, species classification using 3-mer
features with Random Forest (RF) and Support
Vector Machine (SVM) models shows satisfactory
performance, indicating that short k-mer
representations are effective for distinguishing
species with large evolutionary differences. Second,
transforming 3-mer DNA sequences into musical
notes provides an alternative and intuitive way to
observe differences in DNA sequence patterns
across species, as reflected by note distribution and
interval patterns.

However, this study has some limitations. Only short
DNA segments of 500 base pairs were analyzed,
whereas real genomic sequences are much longer. In
addition, the DNA-to-music transformation



Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026 93

simplifies biological information by ignoring codon
degeneracy, where multiple codons that encode the
same amino acid are treated in the same way. This
simplification makes the method easier to apply and
suitable for exploratory analysis, but it reduces
biological detail.

Despite these limitations, the simplicity of this
approach supports exploratory data analysis and
provides an intuitive symbolic view of DNA
sequences. Future work may address these
limitations to improve biological relevance while
preserving the simplicity and interpretability of the
musical visualization.
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