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Abstract – DNA can be viewed as a symbolic sequence with patterns that vary across species. This study 

explores DNA sequences through two complementary approaches: species classification using simple 

machine learning methods and transformation of DNA into musical note representations. In the first task, 

DNA sequences from five organisms with different evolutionary distances are represented using 3-mer 

and 6-mer features. These k-mers form a vocabulary whose frequency counts are converted into feature 

vectors. Random Forest (RF) and Support Vector Machine (SVM) models are then applied for five-class 

classification. Using an 80:20 train-test split and 10-fold cross-validation, the SVM model achieved 

average accuracies above 0.90 for 3-mer features, with low standard deviation, indicating stable 

performance. In the second approach, 3-mer motifs are mapped to musical notes to generate species-

based musical patterns. The resulting musical representations exhibit distinct structural differences 

across species, reflecting variations in underlying sequence composition. Overall, the results demonstrate 

that 3-mer features are effective for species discrimination and that musical transformation provides an 

alternative and intuitive way to visualize DNA sequence patterns. 
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INTRODUCTION 

 

NA serves as the fundamental blueprint of all 

living organisms. Its sequence acts as an 

instruction set that governs cellular development and 

biological function. Although composed of only four 

nucleotides, each DNA sequence is highly specific, 

and even small variations can lead to distinct 

structural or functional outcomes in cells and 

tissues[1]. For example, a gene expressed in eye 

cells encodes instructions that guide the formation of 

ocular tissue rather than any unrelated structure. This 

functional specificity arises from the ordered 

arrangement of nucleotides, making DNA both 

structurally constrained and mathematically 

interpretable. 

 

Because of its inherent uniqueness, DNA enables 

species identification through computational and 

statistical analysis. Particularly, machine learning 

methods have become central tools for modelling the 

high-dimensional patterns embedded in nucleotide 

sequences. For instance, a Random Forest (RF) 

classifier was used to model precursor micro RNA 

data from 16 species [2]. The results demonstrated 

that prediction accuracy is influenced by 

evolutionary distance, with performance ranging 

from approximately 80%  to 93%  when 

distinguishing Homo sapiens from members of the 

Brassicaceae family. Their study relied on k-mer 

representations, specifically 1-mers, 2-mers, and 3-

mers, as numerical features, noting that larger k-

mers rapidly expand the feature space without 

providing proportional improvements in accuracy. 

Moreover, k-mers are well suited for analyzing large 

sequencing datasets because they are 

computationally efficient, require less memory and 

still capture important biological information [3]. 

 

Another approach can be seen in [4], who used a 

multiclass Support Vector Machine (SVM) 

combined with the N-best algorithm to classify 

microbial marker clades. It evaluated k-mer sizes of 

10, 20, 30, 40 and 50 and used the N-best algorithm 

to address overlap and redundancy between feature 

sets. Across 17 species, the method achieved over 
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28%  accuracy for the top-1 prediction and over 

91%  accuracy for the top-10 predictions in both 

training and testing phases. These findings reinforce 

that k-mers remain a widely used feature 

representation for machine learning-based genomic 

classification. In addition, as sequencing 

technologies continue to advance, research efforts 

need to improve k-mer counting methods to handle 

the growing size of sequencing datasets more 

effectively [5]. 

 

Research [4] also noted that many other machine 

learning and statistical methods are commonly used 

in genomic analysis, such as BLAST, Hidden 

Markov Model (HMM) and others. Beyond these 

traditional approaches, deep learning methods such 

as CNNs and LSTMs have also been used to classify 

DNA sequences directly without relying on the k-

mer representation, achieving acceptable 

performance even for the sequences originate from 

the same species[6]. 

 

Interestingly, music also contains structured patterns 

that can be described through pitch relationships, 

interval sequences and rhythmic repetition[7]. These 

elements resemble feature extraction in data 

analysis, where patterns are represented in numerical 

or symbolic form and examined systematically. To 

the best of our knowledge, although informal online 

sources have experimented with mapping DNA 

sequences to musical notes, there is limited peer-

reviewed work that examines this idea within a 

quantitative or computational framework. 

Therefore, this study proposes a dual consecutive 

approach. First, machine learning techniques are 

applied to classify DNA sequences from different 

species using k-mer-based representations. This step 

serves as a validation of the selected data and feature 

representations. Second, the DNA sequences are 

transformed into melodic patterns based on amino 

acid polarity, with the aim of exploring whether the 

resulting musical structures reflect the underlying 

characteristics of the DNA sequences. Through this 

approach, the study provides an alternative way to 

visualize DNA using musical representations. 

 

 

METHODOLOGY 

 

This study uses DNA sequence data obtained from 

5 organisms representing different biological 

domains: human (Homo sapiens), a vertebrate 

animal (Mus musculus), a model plant (Arabidopsis 

thaliana), bacteria (Escherichia coli) and virus 

(Human adenovirus). These organisms were 

intentionally selected to represent clearly distinct 

biological groups. Two types of exploration were 

conducted on the data are a classification task and a 

simple musical pattern analysis as shown in figure 

1. 

 

 
Figure 1. Research Method Flowchart 

 

Data 

The DNA sequences were obtained from the 

National Center for Biotechnology Information 

(NCBI). We used Coding Sequences (CDS) and the 

list of accession IDs is provided in Supplementary 

Material. For each of the five species, 100 sequences 

were collected in FASTA format. All sequences 

were trimmed to a uniform length of 500 base pairs 

to standardize the input data. In addition, one 

representative 500-base-pair sequence from each 

species was later translated into its corresponding 

amino acid chain and subsequently mapped to 

musical notes using a pentatonic scale to generate 

melody patterns for comparison. 

 

Method 

All DNA sequences were downloaded using Python 

with the Biopython library to ensure reproducibility. 

Two trimming strategies were applied to obtain 500-

base-pair input sequences. In the first scenario, the 

sequence was taken starting from the first base pair. 

In the second scenario, the starting position was 

randomized to introduce variation. This randomized 

trimming was intended to introduce positional 

variation and to evaluate the robustness of the 

classification approach with respect to sequence 

starting positions. 
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To prepare the data for classification task, the 

trimmed DNA sequences were transformed into 

numerical features using the k-mer method. A k-mer 

represents a subsequence of length 𝑘 extracted from 

a longer nucleotide sequence [8]. This study used 3-

mers and 6-mers with a sliding window of size 3, 

allowing the capture of local and slightly longer-

range sequence patterns. The resulting k-mers were 

converted into feature vectors using the Bag-of-

Words technique. Bag-of-Words is a text 

vectorization method that ignores order or grammar 

and counts the frequency of unique “words” (in this 

case, k-mers) in the sequence [9]. These frequency 

vectors served as inputs for the classification models 

in the classification investigation. Since DNA 

consist of four nucleotides (A, T, G, and C), the 

feature vector size is 43 = 64 for 3-mer s and 46 for 

6-mer. 

 

With the feature vectors constructed, two 

mathematical classification models, Random Forest 

(RF) and Support Vector Machine (SVM), were 

implemented. Random Forest can be viewed as an 

ensemble method that constructs a collection of 

decision functions, where each function corresponds 

to a decision tree trained on a randomly sampled 

subset of the observations and feature space. As 

described in [10], each tree is generated using an 

independently sampled random vector with an 

identical distribution, ensuring statistical diversity 

across the ensemble. The final classifier is obtained 

by aggregating the individual tree outputs, typically 

through majority voting, which approximates an 

ensemble decision function. This aggregation 

reduces variance and improves generalization, 

forming the basis of the RF model shown 

conceptually in figure 2.  

 

 
Figure 2. Random Forest Model Constructed from 

Multiple Decision Trees 

 

On the other hand, SVM model constructs a 

separating hyperplane that divides the data into two 

classes[11]. The optimal hyperplane is obtained by 

solving an optimization problem that determines the 

parameters w  and 𝑏 . A simple two-dimensional 

linear example is shown in figure 3.  

 

 
Figure 3. Support Vector Machine Algorithm Illustration   

 

The 3-mer and 6-mer of DNA features were then 

used in both RF and SVM models and their results 

were compared. The experiments were designed by 

splitting the dataset into 80% for training and 20% 

for testing. Model performance was evaluated using 

accuracy, precision, recall and F1-score for each 

species. To ensure that the model is more stable and 

accurate, it is further evaluated using 10-fold cross-

validation. The standard deviation and confidence 

interval are also calculated to measure how 

consistent the accuracy is across the different folds. 

 

All experiments were conducted using a fixed 

random seed to ensure reproducibility. The random 

state parameter was set to 42 for both Support Vector 

Machine (SVM) and Random Forest (RF) models. 

Hyperparameter tuning was performed using 

GridSearchCV with cross validation on the training 

data.  

 

For the Random Forest classifier, the evaluated 

parameters included the number of trees 

(n_estimators = {100, 200}), maximum tree depth 

(max_depth = {10, 20, None}), minimum samples 

required to split an internal node (min samples split 

= {2, 5, 10}) and class weight ({balanced, None}). 

For the Support Vector Machine classifier, the 

regularization parameter C ({0.1, 1, 10, 100}), kernel 

coefficient gamma ({scale, auto, 0.1, 0.01}) and 

kernel type ({linear, rbf}) were optimized. The 

optimal hyperparameters were selected based on 

classification accuracy obtained during cross 

validation and were used to train the final models. 
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As the second type of exploration, a simple musical 

pattern analysis was conducted to visualize structural 

pattern of DNA sequences. For this purpose, the 

extracted 3-mers were treated as codons and 

converted into amino acids according to the rules 

shown in figure 4 (with thymine replaced by uracil). 

The resulting amino acid sequences were then 

mapped to musical notes in the pentatonic scale, as 

listed in table 1. 

 

It is important to note that 3-mers were treated as 

codon-like units and mapped to amino acids for the 

purpose of symbolic representation rather than 

biological translation. Although coding sequences 

(CDS) were used in this study, the translation step 

does not aim to identify functional proteins or 

biologically valid Open Reading Frames (ORFs). 

Instead, a fixed reading frame starting from the first 

nucleotide of each selected sequence was applied 

consistently to ensure a uniform and reproducible 

mapping across all species. This approach allows the 

3-mer structure of DNA sequences to be 

systematically transformed into amino acid symbols, 

which are subsequently used for musical mapping and 

pattern visualization. 

 

 
Figure 4. Amino Acids Table [12] 

 
Table 1. Pentatonic Scale Mapping of Amino Acids 

Property 

Group 
Amino Acids 

Musical 

Note 

Range 

Ratio-

nale 

Hydro-

phobic and 

nonpolar 

Glycine, Alanine, 

Valine, Leucine, 

Isoleucine 

C3 – A3 Lower 

pitch  

Property 

Group 
Amino Acids 

Musical 

Note 

Range 

Ratio-

nale 

Methionine, 

Phenylalanine, 

Tryptophan, Proline 

C4 – G4 

Polar (un- 

charged) 

Serine, Threonine, 

Cysteine, Tyrosine, 

Asparagine, 

Glutamine 

A4 – A5 Middle 

range  

Polar 

(charged) 

Aspartic Acid, 

Glutamic acid, 

Lysine, Arginine, 

Histidine 

C6 – A6 Higher 

pitch  

Start codon Methionine C4 Middle C 

note  

Stop codon UAG, UAA, UGA C7 
Highest 

note  

  

A musical scale is not simple to define. It is essentially 

a sequence of notes arranged by specific intervals, 

which represent the frequency differences between 

consecutive tones[13]. One familiar example is the 

major scale: do, re, mi, fa, sol, la, ti, do. The pentatonic 

scale, as the name suggests, consists of five notes: do, 

re, mi, sol, and la, and is widely used due to its 

simplicity and ease of improvisation[14]. This five-

note structure provides a clearer way to identify 

recurring patterns in DNA sequences, thereby 

facilitating qualitative comparison of sequence 

characteristics across different species. 

 

To show the pattern formed by these musical notes, 

the notes were then converted into a melody using the 

MIDIFile library in python by playing these notes 

next to each other at a certain speed and then turning 

that into a midi. A melody in essence is a sequence of 

musical notes that exhibit complex dependencies in 

different time scales [15]. The generated midi file was 

then put in FL Studio, a digital audio workstation 

(DAW), where the sound characteristics were refined 

and a backing track was added to facilitate clearer 

auditory comparison of the resulting melodies. 

 

 

RESULT AND DISCUSSION 

 

DNA Sequence Classification Task 

The performance of two classification scenarios is 

evaluated, Scenario I, in which each 500-base-pair 

DNA segment is taken directly from the first 500 bp 

of the corresponding NCBI sequence and Scenario 

II, in which the starting position for each 500 bp 
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segment is randomized. figure 5 displays the first 

two human DNA sequences obtained using both 

scenarios. As shown in the figure, the resulting 

sequences from the two scenarios begin with 

different bases or nucleotides. For example, in the 

first sequence, Scenario I starts with ATACCC…, 

whereas Scenario II starts with CTACGC…. These 

conditions therefore reflect that the extracted 

sequences accommodate the introduced positional 

variation arising from different sequence starting 

positions.  

  

 
Figure 5. First Two Human DNA Sequences Extracted 

Using Fixed and Randomized Trimming 
 

Using k-mer sizes of 𝑘 =  3  and 𝑘 =  6  with a 

stride of 3 resulted in 166 3-mers and 83 6-mers, 

respectively, for each 500 bp sequence. For example, 

for Sequence 1 under Scenario I in Figure 5, the 3-

mer representation yields the list {ATA, CCC, ATG, 

…, ATC}, whereas the 6-mer representation yields 

the list {ATACCC, CCCATG, ATGGCC, …, 

CTTATC}. The remaining two nucleotides at the 

end of the sequence were discarded because they do 

not form a complete k-mer under the selected stride. 

After converting the k-mers from all five species into 

feature vectors using the Bag-of-Words technique, 

Random Forest (RF) and Support Vector Machine 

(SVM) model were trained for a five-class 

classification task using an 80:20 train-test data split. 

 

Performing hyperparameter tuning using 

GridSearchCV on the cleaned data from Scenario I, 

the optimal parameters for each model were 

obtained as follows. For k = 3, the Random Forest 

model achieved the best performance with 100 trees, 

a maximum depth of 10 and minimum samples split 

of 10, without class weighting. Meanwhile, the SVM 

model performed best using an RBF kernel with C = 

10 and gamma set to scale. For k = 6, the optimal 

Random Forest configuration consisted of 200 trees, 

no depth limitation, minimum samples split of 2 and 

balanced class weights. In contrast, the SVM model 

achieved its best performance with a linear kernel, C 

= 0.1, and gamma set to scale. These tuned 

parameters were subsequently used in all 

classification experiments to ensure fair and 

consistent model evaluation. 

 

Table 2 and 3 present the classification performance 

metrics for RF and SVM models obtained using 

Scenario I. 

 
Table 2. Performance of RF Model Using Scenario I  

𝒌-mer 

Feature 
Class 

Metrics performance 

Acc. Prec. Rec. 
F1-

Score 

𝑘 =  3 

 

 
 

 
 

𝑘 =  6 

 

 

  

Animal 0.96 1.00 1.00 1.00 

Bacteria 0.96 0.95 1.00 0.98 

Human 0.96 1.00 1.00 1.00 

Plant 0.96 0.90 1.00 0.95 

Virus 0.96 1.00 0.80 0.89 
     

Animal 0.94 0.95 0.95 0.95 

Bacteria 0.94 0.95 0.95 0.95 

Human 0.94 0.95 0.95 0.95 

Plant 0.94 0.91 1.00 0.95 

Virus 0.94  0.94 0.85 0.89 

 
Table 3. Performance of SVM Model Using Scenario I 

k-mer 

Feature 
Class 

Metrics performance 

Acc. Prec. Rec. 
F1-

Score 

𝑘 =  3 

 

 

 

 
 

𝑘 =  6  

Animal 0.98 1.00 1.00 1.00 

Bacteria 0.98 1.00 1.00 1.00 

Human 0.98 1.00 1.00 1.00 

Plant 0.98 1.00 0.95 0.97 

Virus 0.98  0.94 1.00 0.97 
     

Animal 0.95 0.94 0.85 0.89 

Bacteria 0.95 0.95 1.00 0.98 

Human 0.95 0.90 0.95 0.93 

Plant 0.95 0.95 1.00 0.98 

Virus 0.95  1.00 0.95  0.97 

 

Based on tables 2 and 3, SVM model achieves 

overall slightly better performance for both 3-mers 

and 6-mers classification, outperforming RF model. 

Furthermore, the 3-mer features yield a higher 

accuracy than the 6-mer features.  

 

For Scenario II, table 4 and 5 show that SVM model 

consistently achieves higher accuracy than RF model. 

Similar to the previous scenario, the 3-mer feature 

again provide better metric performance. 

Additionally, the overall classification performance 

in Scenario II slightly decreases, which may be due 

to the broader positional variation introduced by 

random sequence starting positions. Nevertheless, 

the performance metrics across all species remain 
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acceptable (all above 0.70), suggesting that the 

model maintains reliable classification performance. 

 
Table 4. Performance of RF Model Using Scenario II 

k-mer 

feature 
Class 

Metrics performance 

Acc. Prec. Rec. 
F1-

Score 

𝑘 =  3 Animal 0.95 0.95 0.95 0.95 

Bacteria 0.95 0.91 1.00 0.95 

Human 0.95 0.95 0.95 0.95 

Plant 0.95 1.00 0.95 0.97 

Virus 0.95 0.95 0.90 0.92 
 

𝑘 =  6 

     

Animal 0.79 0.73 0.80 0.76 

Bacteria 0.79 0.74 0.85 0.79 

Human 0.79 0.85 0.85 0.85 

Plant 0.79 0.83 0.75 0.79 

Virus 0.79 0.82 0.70 0.76 

 
Table 5. Performance of SVM Model Using Scenario II 

k-mer 

feature 
Class 

Metrics performance 

Acc. Prec. Rec. 
F1-

Score 

𝑘 =  3 Animal 0.97 1.00 0.95 0.97 

Bacteria 0.97 0.95 0.95 0.95 

Human 0.97 0.95 1.00 0.98 

Plant 0.97 1.00 1.00 1.00 

Virus 0.97 0.95 0.95 0.95 
     

𝑘 =  6 Animal 0.93 0.94 0.75 0.83 

Bacteria 0.93 0.95 1,00 0.98 

Human 0.93 0.95 0.95 0.95 

Plant 0.93 0.83 1.00 0.91 

Virus 0.93 1.00 0.95 0.97 

 

Although an initial 80:20 train-test split was used, 

this approach may be sensitive to data partitioning. 

Therefore, 10-fold cross-validation was employed 

to obtain a more reliable assessment of model 

performance, as presented in table 6 and 7.  

 
Table 6. 10-Fold Cross-Validation Results for Scenario I 

No Fold 

Accuracy 

k = 3 k = 6 

RF SVM RF SVM 

1 Fold 1 0.92 0.97 0.94 0.97 

2 Fold 2 0.97 1.00 0.92 1.00 

3 Fold 3 0.97 1.00 0.94 1.00 

4 Fold 4 0.94 0.97 0.94 1.00 

5 Fold 5 0.94 1.00 0.97 1.00 

6 Fold 6 0.92 1.00 0.89 0.89 

7 Fold 7 0.92 0.97 0.92 0.97 

8 Fold 8 0.94 0.97 0.92 0.94 

9 Fold 9 0.97 1.00 0.97 1.00 

10 Fold 10 1.00 1.00 0.97 0.97 

Mean 0.95 0.99 0.94 0.98 

Standard 

deviation 

0.03 0.01 0.03 0.03 

No Fold 

Accuracy 

k = 3 k = 6 

RF SVM RF SVM 

Confidence 

Interval 

(0.93, 

0.97) 

(0.98, 

1.00) 

(0.92, 

0.96) 

(0.95, 

1.00) 

 
Table 7. 10-Fold Cross-Validation Results for  

Scenario II 

No Fold 

Accuracy 

k = 3 k = 6 

RF SVM RF SVM 

1 Fold 1 0.94 0.98 0.92 0.96 

2 Fold 2 0.92 1.00 0.82 0.94 

3 Fold 3 0.98 1.00 0.92 0.98 

4 Fold 4 0.94 0.98 0.88 0.94 

5 Fold 5 0.96 0.98 0.98 0.98 

6 Fold 6 0.92 0.98 0.98 1.00 

7 Fold 7 0.90 0.92 0.84 0.88 

8 Fold 8 0.86 0.92 0.90 0.96 

9 Fold 9 0.94 0.96 0.90 0.96 

10 Fold 10 0.86 0.98 0.94 0.98 

Mean 0.92 0.97 0.91 0.96 

Standard 

deviation 

0.04 0.03 0.05 0.03 

Confidence 

Interval 

(0.90, 

0.95) 

(0.95, 

0.99) 

(0.87, 

0.95) 

(0.94, 

0.98) 

 

Based on table 6, in scenario I, the classification 

models achieved an average accuracy above 0.90 

with relatively small standard deviations for the 3-

mer features, 0.03 for RF model and 0.01 for SVM 

model. The confidence interval for RF model, (0.93, 

0.97), indicates that the model accuracy consistently 

falls between 93% and 97%, suggesting stable 

performance. From the mean accuracy, standard 

deviation values and confidence intervals, it can be 

observed that SVM model performs better than RF 

model and that the 3-mer features provide better 

classification performance than the 6-mer features.  

 

Furthermore, as shown in table 7, the performance 

of both models slightly decreases in Scenario II. 

Again, this decrease may be due to the broader 

positional variation of nucleotides within sequences 

of the same species. These results are consistent with 

the evaluation obtained from the single train-test 

split, indicating that the models remain stable and 

maintain consistent performance across different 

data subsets. 
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DNA to Music and a Simple Musical Pattern 

Analysis  

As an alternative perspective for observing 

differences in DNA sequence patterns across 

species, the sequences are transformed into musical 

notes. Based on the classification results, where the 

3-mer features provide better classification 

performance, the DNA sequences are transformed 

into musical notes using the 3-mer strategy. 

Following the mapping in table 1, each 3-mer (with 

stride 3) is treated as a codon that determines a 

corresponding amino acid, which is then converted 

into a musical note.  

 

Since each sequence contains 500 base pairs, a 

single sequence generates 166 notes. To maintain 

clarity and avoid excessive length, the melodies are 

limited to the first 500 bp of one representative 

sequence from each species. Specifically, we 

selected one sequence per species using the first 

accession ID available (PV177089.1_COX1 for 

animal, CP195866.1_dnaN for bacteria, 

PX403006.1_ND2 for human, BK010421.1_cox2 

for plant, and MW306919.1_E1A for virus).  

 

For example, Sequence 2 under Scenario I in figure 

5 produces the 3-mer list {ATT, AAT, CCC, …, 

AGT}, which is converted into amino acids as 

{Isoleucine, Asparagine, Proline, …, Serine}. These 

amino acids are then mapped to musical notes 

{‘A3’,’G5’,’G4’, …, ‘A4’}. Complete examples of 

the resulting musical representations for human and 

animal sequences are provided in table 8.  

 
Table 8. Notes generated from 500 bp of human and 

animal DNA sequences  

Species Notes 

Human ['A3', 'G5', 'G4', 'G3', 'D3', 'A5', 'G4', 'E3', 'A3', 

'E5', 'A4', 'C5', 'A3', 'D4', 'D3', 'C3', 'C5', 'G3', 

'A3', 'C5', 'D3', 'G3', 'A4', 'A4', 'A6', 'C7', 'D4', 

'D4', 'C5', 'C7', 'E3', 'C3', 'G3', 'D6', 'A3', 'G5', 

'C4', 'G3', 'D3', 'D4', 'A3', 'G4', 'E3', 'G3', 'C5', 

'E6', 'E6', 'A3', 'G5', 'G4', 'G6', 'A4', 'C5', 'D6', 

'D3', 'D3', 'A3', 'E6', 'E5', 'D4', 'G3', 'C5', 'A5', 

'D3', 'C5', 'D3', 'A4', 'A3', 'A3', 'G3', 'G3', 'A3', 

'D3', 'A3', 'G3', 'D4', 'G5', 'G5', 'A3', 'G3', 'A4', 

'C3', 'A5', 'C7', 'C5', 'A3', 'C5', 'G5', 'C5', 'C5', 

'G5', 'A5', 'E5', 'A4', 'A4', 'G3', 'A3', 'A3', 'A3', 

'C4', 'D3', 'A3', 'D3', 'A3', 'E6', 'G3', 'C3', 'A3', 

'D3', 'G4', 'D4', 'A6', 'D4', 'C7', 'E3', 'G4', 'D6', 

'E3', 'C5', 'A5', 'C3', 'C5', 'G4', 'G3', 'C5', 'A4', 

'C3', 'G3', 'G3', 'G3', 'G3', 'C5', 'C7', 'A5', 'E6', 

'G3', 'D3', 'G4', 'A3', 'A4', 'A3', 'A3', 'E5', 'A5', 

'A3', 'A4', 'G4', 'A4', 'G3', 'G5', 'E3', 'A4', 'G3', 

'G3', 'G3', 'C5', 'G3', 'A4', 'A3', 'G3', 'A4', 'A3', 

'A3', 'D3', 'C3', 'A4']  

Species Notes 

Animal ['C4', 'D4', 'A3', 'G5', 'G6', 'C7', 'G3', 'D4', 'A4', 

'C5', 'G5', 'A6', 'E6', 'C6', 'A3', 'C3', 'C5', 'G3', 

'E5', 'G3', 'G3', 'D4', 'C3', 'D3', 'C7', 'D3', 'C3', 

'A3', 'E3', 'C3', 'C5', 'D3', 'G3', 'A4', 'A3', 'G3', 

'A3', 'G6', 'D3', 'D6', 'G3', 'C3', 'A5', 'G4', 'C3', 

'D3', 'G3', 'G3', 'C3', 'C6', 'C6', 'A5', 'A3', 'E5', 

'G5', 'E3', 'A3', 'E3', 'C5', 'D3', 'A6', 'D3', 'D4', 

'E3', 'A3', 'A3', 'D4', 'D4', 'A3', 'E3', 'A3', 'G4', 

'A3', 'A3', 'A3', 'C3', 'C3', 'D4', 'C3', 'G5', 'C7', 

'G3', 'E3', 'G4', 'G3', 'A3', 'A3', 'C3', 'D3', 'G4', 

'C6', 'A3', 'D3', 'D4', 'G4', 'G6', 'A3', 'G5', 'G5', 

'A3', 'A4', 'D4', 'C7', 'G3', 'G3', 'G4', 'G4', 'A4', 

'D4', 'G3', 'G3', 'G3', 'G3', 'D3', 'A4', 'A4', 'A3', 

'E3', 'D6', 'D3', 'C3', 'D3', 'C3', 'C5', 'C3', 'C7', 

'C5', 'E3', 'E5', 'G4', 'G4', 'G3', 'D3', 'C3', 'G5', 

'G3', 'D3', 'A6', 'D3', 'C3', 'D3', 'A4', 'E3', 'C6', 

'G3', 'C5', 'A3', 'D4', 'A4', 'G3', 'A6', 'G3', 'D3', 

'C3', 'E3', 'A4', 'A4', 'A3', 'G3', 'C3', 'D3', 'A3', 

'G5', 'D4', 'A3', 'C5'] 

 

The MIDI files for all species, as well as the musical 

arrangement, can be accessed at the following link:  

https://drive.google.com/drive/folders/1XMJ82GCn

T-Y52-0Zocqaq0bohXKka2kG?usp=sharing. 

 

The resulting melodies are also visualized using line 

plots to provide a clearer depiction of their structural 

patterns. The patterns generated from the human and 

animal sequences are shown in figure 6 and 7. Both 

species exhibit similar overall trends, with 

hydrophobic amino acids (9 of the 20 amino acids) 

appearing most frequently. In the human sequence, 

however the frequency of polar uncharged amino 

acids (6 of the 20 amino acids) is more balanced 

relative to the hydrophobic group, while the 

remaining categories appear only rarely. In contrast, 

the animal sequence shows more frequent 

fluctuations interval change in notes associated with 

non-hydrophobic amino acids, indicating greater 

variation in its amino acid composition. A direct 

comparison of the note line plots for human and 

animal sequences is provided in figure 8, which 

highlights these differences. 

 

 
Figure 6. Human gene musical pattern 
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Figure 7. Animal Gene Musical Pattern 

 

 
Figure 8. Human and Animal Gene Musical Pattern 

 

As for the patterns generated from the plant, bacteria 

and virus sequences, the visualizations are shown in 

Figure 9, 10 and 11. The frequency of charged amino 

acids, which is relatively rare in human and animal 

sequences, appears more balanced with hydrophobic 

amino acids in these species. Although charged 

amino acids make up only about 25% of all amino 

acids (5 out of 20), their presence is notably more 

frequent in bacteria and virus. This can be clearly 

observed in Figure 10 and 11, where charged amino 

acids emerge much more often compared to the 

patterns seen in human and animal sequences. In 

addition, extreme interval changes, reaching  up to 3 

octaves are more commonly found in these 

sequences, reflected greater variability. 

 

 
Figure 9. Plant Gene Musical Pattern 

 

 
Figure 10. Bacteria Gene Musical Pattern 

 
Figure 11. Virus Gene Musical Pattern 

 

Overall, the musical transformation provides an 

alternative and intuitive way to observe differences 

in DNA sequence patterns across species. By 

converting nucleotide sequences into melodic 

structures, variations between species can be 

perceived more easily through differences in note 

distribution and interval patterns. However, it is 

important to emphasize that this transformation is 

not intended to represent biological protein 

synthesis. The 3-mer-to-amino-acid mapping was 

applied using a fixed reading frame solely for 

symbolic pattern transformation, not for biological 

interpretation of coding regions. In addition, this 

approach ignores codon degeneracy, as multiple 

codons that encode the same amino acid are treated 

in the same way. From the 64 possible codons, only 

20 amino acids and one stop symbol are mapped to 

musical notes. This simplification makes the 

representation easier to apply, but it also reduces the 

biological detail of the method. Therefore, this 

approach should be considered a pattern 

visualization technique rather than a biologically 

precise model. 

 

 

CONCLUSION 

 

This study presents two related explorations of DNA 

sequences. First, species classification using 3-mer 

features with Random Forest (RF) and Support 

Vector Machine (SVM) models shows satisfactory 

performance, indicating that short k-mer 

representations are effective for distinguishing 

species with large evolutionary differences. Second, 

transforming 3-mer DNA sequences into musical 

notes provides an alternative and intuitive way to 

observe differences in DNA sequence patterns 

across species, as reflected by note distribution and 

interval patterns. 

 

However, this study has some limitations. Only short 

DNA segments of 500 base pairs were analyzed, 

whereas real genomic sequences are much longer. In 

addition, the DNA-to-music transformation 
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simplifies biological information by ignoring codon 

degeneracy, where multiple codons that encode the 

same amino acid are treated in the same way. This 

simplification makes the method easier to apply and 

suitable for exploratory analysis, but it reduces 

biological detail. 

 

Despite these limitations, the simplicity of this 

approach supports exploratory data analysis and 

provides an intuitive symbolic view of DNA 

sequences. Future work may address these 

limitations to improve biological relevance while 

preserving the simplicity and interpretability of the 

musical visualization. 
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