Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI
Vol. 11, Nomor 01, January 2026, hal. 1- 16

DOI http://dx.doi.org/10.36722/sst.v11i1.5086 https://jurnal.uai.ac.id/index.php/SST

EduCrypt: A Secure File Data Sharing Platform using
Hybrid Encryption for Cloud-Based E-Learning
Andi Arniaty!, Riri Safitri', Lambda Sangkala Murbawisesa'

"nformatics Department, Faculty of Science & Technology, Universitas Al-Azhar Indonesia,
J1. Sisingamangaraja, Kebayoran Baru, DKI Jakarta, 12110.

Corresponding author/E-mail: andi.arniaty(@uai.ac.id

Abstract — The rise of cloud-based learning environments has transformed education but has also exposed
vulnerabilities in data security. Learning Management Systems (LMSs) often handle sensitive academic
data without adequate protection, leaving it vulnerable to unauthorized access and data breaches. This
study introduces EduCrypt, a secure file-sharing platform that uses hybrid encryption, combining AES
for fast data encryption and RSA for secure key exchange. In this research, a Hybrid Waterfall-Iterative
method was used as the overarching research methodology to guide requirements analysis, architectural
design, system implementation, and evaluation. EduCrypt integrates seamlessly with Moodle LMS via
token- and credential-based authentication. Its architecture includes asynchronous RabbitMQ workers
for efficient synchronization and a user-friendly web interface for secure file operations. Benchmark tests
demonstrate stable encryption and decryption times under 300 ms for files up to 30 MB, showcasing both
scalability and efficiency. Security evaluations confirm that EduCrypt effectively mitigates brute-force
attacks, SQL injection, and man-in-the-middle attacks. This research resulted in a validated
enhancement in file security practices for LMS through the implementation of a hybrid cryptographic
model. Furthermore, the outcome includes a fully functional EduCrypt prototype integrated with
Moodle, along with performance and security evaluation results.

Keywords - Data Security, Hybrid encryption, File sharing, E-learning, Cloud computing.

INTRODUCTION

In the global digital era, technological
transformation has significantly reshaped the
educational landscape, particularly through the
adoption of cloud-based learning environments,
such as Learning Management Systems (LMS).
These platforms enable lecturers and students to
share materials, assignments, and research
documents more conveniently and efficiently.
However, as the use of digital platforms expands,
data security has become an increasingly critical and
complex issue. Incidents of data leakage, file
tampering, and unauthorized access to academic
documents are now common in educational
institutions [1].

Several factors contribute to these vulnerabilities,
including weak encryption, insufficient access
control policies, and low user awareness of data

protection. Many file-sharing systems in academic
settings still rely on basic or even no encryption,
making them highly susceptible to data misuse and
cyberattacks. Previous studies have indicated that
cloud systems in the education sector are particularly
vulnerable to security breaches due to weak
encryption or the lack of additional protection during
file transfers. According to Singh and Garg [1], and
C. Susmitha et. al [2], nearly 70% of data leakage
incidents in the education sector occur due to the
absence of robust encryption mechanisms. Within
LMS environments, unprotected file-sharing
practices create opportunities for threats such as data
modification, malware injection, and academic
identity theft.

To address these risks, numerous studies have
focused on developing secure cloud-based file-
sharing systems. One widely adopted approach is
hybrid encryption, which combines the strengths of

Received: 16 November 2025, Accepted: 19 December 2025, Published: 07 January 2025

2 Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026

two algorithms: AES (Advanced Encryption
Standard) for high-speed symmetric encryption and
decryption, and RSA (Rivest—Shamir—Adleman) for
secure asymmetric key distribution. Research by
Durge and Deshmukh [3] demonstrated that
combining AES and RSA significantly enhances
data security in cloud computing compared to using
either algorithm independently. However, most
existing studies focus primarily on algorithmic
performance rather than end-to-end system
integration within LMS. Many of these works
evaluate encryption in isolation rather than as part of
a complete educational workflow, creating a
research gap regarding the practical deployment of
encryption and its impact on real-world teaching and
learning ecosystems.

Additionally, most prior studies have focused on
general cloud environments, overlooking the
specific requirements of educational settings such as
integration with LMS platforms, support for
efficient teaching and learning workflows, and
usability for both lecturers and students. This gap in
the literature underpins the present study. To fill this
gap, this research develops EduCrypt, a hybrid-
encryption-based file security platform specifically
designed for digital education. Unlike previous
approaches, this study employs a structured research
and system development methodology, specifically,
a Hybrid Waterfall-Iterative model [8]. This model
enables both formal requirements analysis and
continuous refinement based on user workflows in
real academic environments. This methodological
clarity sets the study apart from previous works that
focus solely on encryption mechanisms without
considering their practical integration.

Several studies have proposed encryption-based
methods for ensuring the security of cloud data.
However, most of these methods rely on a single
encryption technique - either symmetric or
asymmetric - without leveraging the strengths of
both. Additionally, many file-sharing systems built
on Learning Management Systems (LMSs) still rely
on basic access controls without robust encryption.

For example, Durge and Deshmukh [3] introduced a
hybrid AES-RSA approach that enhances both
performance and security in cloud data storage.
Singh and Garg [1] enhanced cloud security by
combining RSA, AES, and Blowfish with secure
One-Time Password (OTP) functionality, resulting
in significant improvements in data protection.
Abualkas and Bhaskari [4] presented a hybrid ECC-
AES approach that focuses on efficient key

management in cloud environments. Al-Bayati AS
[5] demonstrated a hybrid AES-RSA model that
shows increased resistance to brute-force attacks.
Fathima and Arumugam [6] developed a new data
transmission model integrating RSA with
ChaCha20-Poly1305 to ensure data integrity. Lastly,
Saini and Sainis [7] proposed a modular hybrid
encryption framework that combines AES block
encryption with Feistel networks.

Despite these advancements, there is a noticeable
gap in the literature regarding the direct integration
of hybrid encryption into LMS platforms commonly
used in educational settings. Furthermore, most
existing approaches have not adequately considered
user experience, particularly for non-technical users
such as lecturers and students, when adopting secure
digital systems. This study differs from current
research by not only examining algorithmic
performance but also considering LMS-level
interoperability, workflow alignment, asynchronous
file processing using RabbitMQ, and usability
challenges unique to educational environments -
areas that have been largely overlooked in the
literature.

This research introduces EduCrypt, an innovative
secure file-sharing system based on hybrid
encryption, designed explicitly for cloud-based e-
learning. EduCrypt’s key contributions include
integrating hybrid encryption into educational
environments, using AES for efficient data
encryption, and RSA for secure key management. It
also optimizes encryption efficiency to ensure the
system remains secure and fast while providing a
seamless user experience. EduCrypt offers easy
integration with existing LMS infrastructures,
ensuring that institutional workflows are not
disrupted. Additionally, it adopts a Hybrid
Waterfall-Iterative development model to facilitate
structured yet adaptive system development that
aligns with user requirements and continuous
security validation. By integrating a clear research
method with a system-level implementation that is
directly compared with existing studies, this work
reinforces the methodological foundation of
EduCrypt and firmly situates it within current
scholarly discourse.

Based on these motivations, this study aims to
explore how an effective secure file-sharing system
can be implemented in digital learning
environments. It will investigate how hybrid
encryption methods can enhance data protection in
cloud-based e-learning systems and how such

Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026 3

systems can maintain high processing efficiency for
encrypted data without compromising usability or
access speed. To meet these objectives, EduCrypt is
proposed as a comprehensive, scalable, and user-
friendly platform that strengthens data
confidentiality and integrity in modern digital
education.

METHOD

EduCrypt was developed using a Hybrid Waterfall-
iterative model that combines the structured phases
of the Waterfall method with the flexibility of
iterative development. The research activities within
this framework included requirements analysis,
system design, and implementation, all integrated
with testing. Instead of focusing on full operational
deployment, the final stage of this study emphasizes
evaluation and validation. This includes
performance benchmarking, security testing, and
deployment readiness assessment. This
methodological approach aligns with the study's
research-oriented goals, prioritizing system
correctness, security, and performance validation
over a large-scale operational rollout. The overall
structure uses a Waterfall-style approach to maintain
stable requirements and clear architecture. Iterative
cycles are integrated within certain phases, such as
system implementation and testing. During these
phases, components are repeatedly developed,
tested, and refined based on performance and
security feedback without altering initial
requirements. Thus, iteration occurs at the micro
level rather than across all phases, in line with hybrid
Software Development Life Cycle (SDLC)
practices.

The iterative component strengthens the structured
framework by promoting continuous improvement
in implementation outcomes informed by evaluation
results. Feedback from performance measurements
and security assessments is used to iteratively refine
system components. This ensures that each cycle
improves functional correctness, security
compliance, and performance efficiency. This
iterative refinement process allows the system to
evolve systematically while remaining aligned with
established research objectives.

The diagram in Figure 1 outlines the implementation
and validation workflow of EduCrypt,
distinguishing it from a conventional Waterfall
model. It illustrates how the structured phases of
requirements analysis and system design lead into

iterative cycles of implementation, testing,
evaluation, and validation. This representation
captures the research process employed in this study,
underscoring the continuous evaluation and
validation required to refine the EduCrypt system
before its consideration for real-world deployment.

Requirements Analysis

The research process began with a requirements
analysis phase that focused on identifying security
risks and assessing user needs within Moodle-based
LMS. This phase examined how academic files such
as assignments, lecture materials, and research
documents are stored, accessed, and transmitted in
typical LMS environments.

Risk Analysis and User Needs:

« Identifying security vulnerabilities in the Moodle-
based LMS

« Observing lecturer/student needs regarding file
security

.

EduCrypt System Design:

« AES-256 + RSA-2048 Hybrid Encryption
Scheme, SHA-256 Hashing

« Backend, Frontend, and Worker Architecture
Design (RabbitMQ)

« Multi-University ERD Development

v

System Implementation:

« Backend: JWT authentication, Moodle integration (token &
username-password), course synchronization, assignments,
submissions, private files, worker context ID scanning

« Frontend: Login, registration, dashboard, courses, private
files, university integration, Ul file details, Ul benchmark

'

Technical Testing:

« Encryption—decryption benchmarks (1 MB, 10 MB, 30 MB)
« CPU/RAM usage analysis
« Brute force, MITM, SQL injection simulations

v

Evaluation & Validation:

Integration with UAI LMS

Security & Performance Validation

API, token handling, logging, and role-based
restriction improvements

Figure 1. EduCrypt research process and system
implementation workflow.

The analysis revealed that many LMS file-sharing
mechanisms rely primarily on access control policies
and do not implement cryptographic protection at
the file level. Consequently, sensitive academic data
remains vulnerable to unauthorized access, file
tampering, and interception during data
transmission.

4 Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026

Simultaneously, user needs were evaluated through
direct observations and informal discussions with
lecturers and students to understand their
expectations and real-world interactions with LMS
platforms. The findings indicated that while users
prioritize ease of access, efficiency, and seamless
integration with existing workflows, they generally
have low awareness of file-level security risks.
Notably, both lecturers and students emphasized that
any additional security mechanisms should operate
transparently, without introducing extra complexity
or disrupting established teaching and learning
processes.

This requirements analysis phase established the
core design constraints and functional requirements
for EduCrypt. By aligning identified security risks
with actual user behavior and institutional
workflows, this stage ensured that the proposed
system addresses critical vulnerabilities while
maintaining usability, efficiency, and compatibility
with existing Moodle-based LMS infrastructures.
The outcomes of this phase directly informed
subsequent design and implementation decisions for
the system.

System Design

Following the requirements analysis, the research
entered the system design phase, in which the overall
architecture and security mechanisms for EduCrypt
were clearly defined. During this stage, a hybrid
encryption scheme was developed to balance strong
security with operational efficiency. AES-256 was
chosen as the symmetric encryption algorithm for
encrypting file contents due to its high performance
and suitability for handling large volumes of data.
RSA-2048 was utilized for asymmetric encryption,
providing secure protection and distribution of the
AES session keys. Additionally, SHA-256 hashing
was implemented to verify file integrity and detect
unauthorized modifications.

The system architecture was designed using a
modular approach that separates core functionalities
into backend services, frontend interfaces, and
components for asynchronous processing. The
frontend component serves as the primary user
interface, providing essential functions such as
registration, authentication, dashboard navigation,
file management, and institutional integration. It is
designed to deliver an intuitive, responsive user
experience while maintaining strict access controls.
The backend serves as the platform's core, managing
encryption and decryption, handling API
interactions, and facilitating communication with

the LMS. It implements user authentication using
JSON Web Tokens (JWTs) with a 72-hour
expiration period, ensuring secure, time-sensitive
access.

Communication between EduCrypt and the Moodle
LMS is managed through a dedicated integration
layer that uses RESTful APIs supporting both token-
and credential-based authentication. This dual
approach allows for flexible deployment across
various institutional environments. To enhance
scalability and efficiency, EduCrypt employs an
asynchronous worker system powered by
RabbitMQ, enabling parallel processing for context
ID scanning and large-scale synchronization of user
data and course files.

All encrypted files are stored in a secure repository,
where data is protected using the AES-256
algorithm. RSA is used to secure encryption keys
and manage key exchange [9], while the SHA-256
hash algorithm ensures data integrity by preventing
unauthorized modification or corruption of stored
files.

The interaction among various components,
including the Moodle API, the integration layer, a
hybrid encryption engine using AES-256, RSA-
2048, and SHA-256, and secure storage, is
illustrated in Figure 2. This figure shows the entire
workflow of EduCrypt's system architecture, from
file synchronization in Moodle to encryption,
storage, and secure end-user retrieval. Figure 3
illustrates the complete file upload and download
process, emphasizing the interactions among actors,
cryptographic operations, integrity verification, and
conditional access control within the system.

A multi-university data model was created to ensure
scalability across different institutions. An Entity-
Relationship Diagram (ERD) was developed to
model multiple universities, users, courses, and file
repositories within a single deployment of
EduCrypt. This design guarantees data isolation
between institutions while enabling centralized
management and extensibility. Overall, the system
design phase effectively transformed security
requirements and user needs into a robust, scalable
architecture that is compatible with learning
management systems (LMS). This architecture
serves as the foundation for the implementation and
evaluation stages of the EduCrypt research.

Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026 5

Moodle LMS

Moodie API
(Token/Usemame-password)
Moodle DB Moodle Storage
(User D, Course, Assignment (Qriginal File)

EduCrypt Integration Layer
Async Worker
(ContextlD Scanner / File
Fetcher)

Integration Service
(API Connector)

EduCrypt Core System

AES-256 RSA-2048 SHA-256
Fast File Encryption | Key Encryption || Integrity Hash
Hybrid Encryption Engine

EduCrypt Secure Storage

Encrypted File Storage
(AES+RSA Protected)
Metadata DB

(ERD Model Course, Assignment,
‘Submission, Private Files)

< User (Lecturer/Student)

/N Access the LMS
Actor Upload/Download Files

Figure 2. System Architecture and Module
Decomposition of EduCrypt

-
User
(Lecturer / Student) Moodle LMS Educrypt System

Upload File
,,,,,,,,,,,,,,,,,,,,,,,,,,,, I»
Trigger API
Request
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I
Scan Context ID
Encrypt File
(AES-256)
Encrypt AES Key
(RSA-2048)
Compute Hash
(SHA-256)
Store Encrypted
File + Metadata
Request Dowload
,,,,,,,,,,,,,,,,,,,,,,,,,,,, I»
Trigger API

Request

Retrieve Encrypted
File + Metadata

Decrypt AES key
(RSA-2048)258)

Decrypt File
(AES-256)

Verify Hash
(SHA-256)

Hash Match?

—I—

Yes No

Access Reject File &
File Log Event

Access File

Figure 3. Activity Diagram of Secure File Upload and
Download Workflow in EduCrypt

System Implementation

The system implementation stage translated the
conceptual design of EduCrypt into a fully
functional research prototype. During this stage, all
architectural components were developed through
concrete backend and frontend processes, ensuring
they aligned with the defined security requirements
and user needs.

On the backend, EduCrypt implemented a secure
authentication mechanism using JSON Web Tokens
(JWT) with a designated validity period to manage
user sessions and access control. To ensure broad
compatibility with Moodle-based LMS, two
integration methods were supported: token-based
authentication for institutional administrators and
advanced users, and credential-based authentication
using a username and password for non-technical
users. The backend also managed the automated
synchronization of academic data, including
courses, assignments, submissions, and private user
files. To enhance scalability and performance, a
RabbitMQ-based worker system was integrated to
asynchronously scan and process context IDs,
enabling parallel file synchronization and reducing
processing latency. All file-related operations were
secured through an automated hybrid-encryption
workflow, in which files are encrypted upon
retrieval from Moodle and decrypted only upon
authorization.

On the frontend, EduCrypt provided a web-based
interface designed to support common academic
workflows without disrupting the user experience.
Core interfaces included login and registration
pages, a dashboard for system overview, course
listings, private file management, and a university
integration configuration page. Additional interfaces
were created to display detailed file information and
performance benchmarks, accessible exclusively to
administrative users. File downloads were handled
transparently via server-side decryption, ensuring
that encrypted files remain protected at rest while
users receive plaintext files without requiring any
additional technical steps.

This implementation stage signifies the operational
realization of EduCrypt as a secure, scalable, and
user-oriented file-sharing platform. By integrating
cryptographic mechanisms, asynchronous
processing, and LMS-compatible workflows, the
implementation demonstrates how hybrid
encryption can be effectively integrated into cloud-
based educational environments while maintaining
both performance efficiency and usability.

6 Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026

Technical Testing

Following the system implementation, technical
testing was conducted as a crucial validation stage to
evaluate both the performance efficiency and
security robustness of EduCrypt under realistic
operating conditions. The performance evaluation
focused on systematic benchmarking of encryption
and decryption using three representative file sizes -
1 MB, 10 MB, and 30 MB - to reflect typical
academic file sizes in LMS. For each scenario,
detailed measurements of processing latency, CPU
utilization, and RAM consumption were collected to
assess computational overhead and resource
efficiency. The results demonstrated stable, scalable
performance, with encryption and decryption times
remaining within acceptable real-time thresholds
even for large files. This confirms the suitability of
the AES-RSA hybrid approach for cloud-based
educational workloads.

In parallel, comprehensive security testing was
performed through controlled attack simulations to
validate the system’s defensive capabilities. Brute-
force attack simulations were conducted to evaluate
resistance to key-guessing attempts, confirming that
exhaustive search is infeasible for compromising
AES-256-encrypted content. Man-in-the-middle
(MITM) simulations were conducted by intercepting
network traffic to verify that only encrypted,
Base64-encoded ciphertext was exposed during
transmission, with no leakage of plaintext or
sensitive metadata. Additionally, SQL injection
attempts were systematically tested across backend
API endpoints to assess input handling and query-
execution security, resulting in no successful
exploits due to the use of parameterized queries and
strict validation mechanisms.

Collectively, these technical tests confirm that
EduCrypt meets both performance and security
requirements, validating its readiness for
deployment in real-world LMS-based educational
environments.

Evaluation and Validation

The final stage of the research focused on evaluating
and validating EduCrypt to ensure it met both
technical and institutional requirements within a real
educational environment. During this stage,
EduCrypt was integrated with the Learning
Management System (LMS) at Universitas Al-
Azhar Indonesia (UAI) to verify its interoperability,
functional correctness, and operational stability in an
authentic academic setting. This integration process
confirmed that EduCrypt could securely synchronize

courses, assignments, submissions, and private files
without disrupting existing LMS workflows for
lecturers and students.

Comprehensive security and performance validation
was conducted by assessing the system under
realistic usage scenarios. Encryption and decryption
operations were tested to ensure consistent
performance across different file sizes while
maintaining confidentiality and integrity. Access
control mechanisms were evaluated through role-
based restrictions, ensuring that sensitive operations
- such as file encryption, decryption, and benchmark
visualization - were accessible only to authorized
administrative roles. Role-based wuser interface
validation was conducted through functional testing
rather than formal usability evaluation. A researcher
served as an administrator, while a student assumed
the end-user role. Each tester followed predefined
interaction scenarios, such as file upload, download,
and access to encryption and decryption features.
The purpose was to verify that the Ul correctly
enforced role-based access policies, not to assess
user experience. The results showed that UI
elements adapted to user roles, with restricted
functions remaining inaccessible to unauthorized
users. This validation confirmed that EduCrypt
enforces the principle of least privilege while
maintaining functional accessibility for non-
technical users.

Additionally, system-level validation was performed
on the API layer, with a focus on secure token
handling, robust authentication, and request
isolation. JWT-based session management was
tested for reliability and expiration enforcement, and
detailed logging mechanisms were implemented and
validated to support auditability, error tracing, and
incident analysis. These evaluations demonstrated
that EduCrypt not only functions as intended but also
adheres to secure-by-design principles, ensuring its
readiness for controlled deployment within
institutional LMS infrastructures and future
scalability across broader educational environments.

Hybrid Encryption Mechanism and Key
Management

EduCrypt employs a Hybrid Encryption approach
that balances processing efficiency with robust
security, protecting files in cloud-based learning
environments. This mechanism integrates three
main algorithms: AES-256 (Advanced Encryption
Standard) for symmetric encryption to enhance file
content security, RSA-2048 (Rivest-Shamir-
Adleman) for asymmetric encryption to facilitate

Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026 7

secure key distribution among users, and SHA-256
(Secure Hash Algorithm) as a hash function to
maintain file integrity, guaranteeing that no data
changes occur during transmission or storage.

The hybrid encryption process in EduCrypt begins
by generating an RSA key pair comprising a public
and a private key. The public key is stored on the
server for encryption purposes, while the private key
is securely held by authorized users. When a file is
uploaded to the system, EduCrypt randomly
generates a unique AES session key for that file. The
file is then encrypted using this session key, yielding
a ciphertext. Subsequently, the AES key used for
encryption is re-encrypted with the recipient's RSA
public key, preventing unauthorized parties from
accessing the key distribution.

Both the ciphertext and the encrypted AES key are
stored securely. During decryption, an authorized
user employs the RSA private key to unlock the AES
key, after which the system decrypts the file using
that session key, restoring the data to its original
form. Once decryption is complete, EduCrypt
computes the SHA-256 hash of the decrypted file
and compares it with the original hash to verify data
integrity.

To ensure end-to-end data integrity, EduCrypt
employs SHA-256 hashing at two key stages of the
file lifecycle. First, a SHA-256 hash is computed
immediately after the file is received and before
encryption. This initial hash acts as the integrity
fingerprint of the plaintext file. The SHA-256 hash
is securely stored as immutable metadata with the
encrypted file record in the database, protected by
access controls. By binding the hash to the file
identifier, user authorization context, and upload
timestamp, EduCrypt prevents unauthorized
modifications to the integrity metadata. During
retrieval, the encrypted file is decrypted with the
AES session key, and a new SHA-256 hash is
computed from the plaintext. This hash is compared
to the original stored hash; only a match allows the
file to be processed further. Any mismatch triggers
handling of integrity violations, rejecting the file to
prevent access to corrupted data. This two-stage
hashing mechanism ensures integrity throughout
storage, transmission, and decryption. By separating
integrity verification from encryption processes,
EduCrypt effectively detects unauthorized
modifications at any stage.

In terms of key management, EduCrypt implements
a strict separation between the lifecycles of

symmetric and asymmetric keys. RSA key pairs are
generated for each user during the registration or
integration phase. The RSA public key is stored on
the server and used solely to encrypt AES session
keys, whereas the RSA private key is never
transmitted over the network. The private keys are
securely stored on the server in an encrypted format
and are only accessible during authorized decryption
processes, governed by strict role-based access
control.

AES keys are dynamically generated as one-time
session keys for each file operation, ensuring
forward secrecy at the file level. These session keys
are discarded immediately after encryption or
decryption completes and are never reused across
files. This design prevents key reuse attacks and
minimizes the impact of any potential key exposure.

Key rotation and revocation are implicitly enforced
through session-based access control. When a user
account is revoked, tokens expire, or access rights
are modified, the associated RSA private keys
become inaccessible, effectively preventing further
decryption of protected files. Moreover, AES keys
are never stored in plaintext, and all encrypted keys
kept in the database are bound to user authorization
and token validity.

This key management strategy ensures that
cryptographic materials are protected at both the
user and server levels, thereby minimizing the attack
surface while maintaining ease of use for lecturers
and students. By integrating per-file AES session
keys, controlled usage of RSA keys, and strict access
policies, EduCrypt establishes a secure, scalable,
and auditable key management framework suitable
for cloud-based educational environments.

The encryption and decryption process can be
described mathematically as follows:

The original file, denoted P, is encrypted using the
AES session key AES ks, yielding the ciphertext C
= AESks (P). The session key is then encrypted with
the recipient's RSA public key, yielding K’s =
RSAKpub (ks). During decryption, the session key is
recovered using the recipient's private key,
according to the formula Ky = RSA'kpmiv (k).
Finally, the original file is retrieved using P
= AES 'k, (C)[9].

This approach achieves a balance between speed and
security. AES provides fast encryption and

8 Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026

decryption, while RSA ensures secure key exchange,
both of which are essential in multi-user systems
such as cloud-based LMS. Additionally, SHA-256
offers an extra layer of protection by verifying data
integrity.

By combining these algorithms and mitigation
strategies, EduCrypt successfully balances high-
level cryptographic security with efficient system
performance, making it a flexible and reliable
solution for data security needs in cloud-based
digital education ecosystems.

Integration and Implementation

In this study, integration and implementation
represent two closely related yet conceptually
distinct aspects of the EduCrypt system. Integration
refers to how EduCrypt interacts with existing
Learning Management Systems (LMS), particularly
Moodle. On the other hand, implementation focuses
on how the system is technically constructed,
deployed, and executed at both the application and
infrastructure levels.

EduCrypt is seamlessly integrated with the Moodle
Learning Management System (LMS) via a flexible,
secure REST APIL This integration enables
EduCrypt to operate both as a standalone encryption
platform and as a component within educational
institutions' existing digital learning ecosystems.

To accommodate users with varying levels of
technical expertise, two authentication mechanisms
have been developed. The first is Access Token
Integration, designed for administrators or
institutions that have full control over the LMS. This
method uses a personalized Moodle API token that
has limited access rights. The token facilitates data
requests to the Moodle REST API endpoint,
enabling synchronization of course data,
assignments, submissions, and private files. This
approach ensures a high level of security, as the
token is valid for a specific period and can be
revoked by the institution's administrator at any
time.

The second mechanism, Credential-based
Integration, serves non-technical users, such as
lecturers and students, who may not be familiar with
managing API tokens. This option allows
authentication using a campus username and
password. The EduCrypt system then generates a
temporary, limited-access token, ensuring data
security while maintaining ease of use. This dual

model makes EduCrypt accessible to various user
groups while balancing usability and data protection.

EduCrypt enforces strict separation of privileges
when interacting with Moodle services. It integrates
exclusively through officially supported REST API
endpoints for course listing, assignment metadata
retrieval, submission handling, and private file
access, without direct database access or core LMS
modifications. Each request from EduCrypt to
Moodle is authorized with scoped credentials that
provide only the minimum necessary permissions.
Access tokens, which are tied to user roles and
contextual identifiers such as course and user IDs,
ensure that users can access only resources relevant
to their roles, preventing privilege escalation. User
authentication and role validation are performed by
Moodle, after which EduCrypt issues a short-lived
internal token for encrypted file operations. Moodle
credentials are not stored persistently; tokens are
validated on each request before any operation is
performed. Invalid or expired tokens are promptly
rejected at the API gateway level.

By leveraging role-aware access control, scoped API
permissions, and short-lived tokens, EduCrypt
effectively adheres to the principle of least privilege,
minimizing the attack surface while maintaining
functionality between EduCrypt and Moodle in
educational settings.

On the implementation side, the system's backend is
built with Node.js for APl management and Go
(Golang) for intensive processing tasks, such as
encryption, decryption, and file management. This
choice was made to maximize efficiency and speed,
as Golang is renowned for its high performance in
parallel and concurrent computing. At the same
time, Node.js excels at handling asynchronous
requests via RESTful APIs. The entire integration
process with Moodle is managed modularly,
including a RabbitMQ-based worker consumer that
automatically scans user context IDs and
synchronizes data between systems in real time.

The frontend implementation is developed using a
modern JavaScript framework that supports
dynamic, interactive displays. The user interface
includes a login page, a registration page, a
dashboard, a courses page, a private files page, and
a university integration page. EduCrypt implements
token-based authentication middleware to maintain
user session validity and prevent unauthorized
access, with tokens valid for 72 hours before
automatically expiring.

Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026 9

To complement the discussion on integration and
implementation, Figure 4-8 showcases sample user
interface layouts for EduCrypt. These interfaces
highlight the role-aware dashboard, secure file
management, and Moodle-integrated course views.
They demonstrate how access control policies and
authentication mechanisms are enforced at the user
interface level.

§20
S

Figure 5. Dashboard page

Figure 6. Courses page

Figure 7. Integration page (Add Universtity)

e ,

Encryption Benchmark Docryption Benchmank

Figure 8. UI for encrypted file access and cryptographic
performance validation.

EduCrypt was tested in a cloud environment using a
distributed server-based infrastructure. The testing
focused on measuring encryption and decryption
performance for academic files of varying sizes,
synchronization speeds between systems, and
resource utilization, including CPU and memory
usage. The implementation results demonstrated that
EduCrypt can efficiently encrypt and decrypt files
up to 30 MB in size, with an average memory usage
of approximately 214 MB and processing times that
fall within optimal limits for e-learning applications.
With its adaptive integration architecture and cloud-
based development approach, EduCrypt has
successfully established itself as a secure file-
sharing system that is not only cryptographically
secure but also easy for educational institutions to
adopt without disrupting their existing LMS
operations.

RESULTS AND DISCUSSIONS

The implementation of EduCrypt has created a fully
functional, secure file-sharing platform that
integrates seamlessly with the Moodle Learning
Management System (LMS) via RESTful APIs. This
integration is designed to maintain native user
workflows within Moodle while providing a
transparent security overlay that protects all file
uploads and downloads, ensuring that teaching and
learning processes remain uninterrupted.

Backend Implementation

From a system performance perspective, EduCrypt's
backend uses a combination of Node.js and Go
(Golang) to optimize encryption and decryption
performance, enabling efficient parallel
communication between services. The authentication
mechanism uses JSON Web Tokens (JWTs) with a
72-hour validity period, ensuring secure, session-
persistent access and reducing the frequency of user
reauthentication.

10 Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026

The integration with Moodle supports two
authentication methods: token-based authentication
for institutional administrators and credential-based
authentication (username and password) for general
users. This dual mechanism enhances accessibility,
especially for non-technical users who may not be
familiar with generating API tokens. EduCrypt also
automates the synchronization of course data,
assignments, submissions, and private files by
employing a RabbitMQ-based worker-consumer
model for asynchronous file-context scanning. This
approach significantly improves data
synchronization efficiency, achieving processing
speeds up to 3 times those of conventional sequential
synchronization methods.

At the core of EduCrypt's security layer is the Hybrid
Encryption Mechanism, which combines AES and
RSA algorithms for data protection and key
management, respectively. It employs base64
encoding for decryption to ensure compatibility and
secure file transfer. With this design, files remain
encrypted at all times, even after download, ensuring
end-to-end data confidentiality. Furthermore, all
system activities, including encryption, decryption,
and integration events, are logged by a centralized
systemd-based monitoring service, enabling real-
time auditing, fault tracing, and operational
transparency.

Frontend Implementation

The frontend interface of EduCrypt was developed
using a modern, responsive JavaScript framework
that integrates seamlessly with the backend API. The
user interface includes key pages such as Login,
Registration, Dashboard, Courses, and Private Files,
as well as a University Integration page for
onboarding new institutions.

Client-side authentication is managed through
secure middleware that stores tokens in local
storage, maintaining user sessions across page
reloads. Expired tokens automatically redirect users
to the login interface, enhancing session security.
The File Details dashboard provides administrators
with real-time system performance indicators,
including encryption and decryption times, CPU
utilization, and RAM consumption, supporting
transparent system monitoring and optimization.

Additionally, EduCrypt implements a server-side
decryption mechanism that streamlines the
download workflow: files are decrypted within the
server environment and delivered to clients in
base64-encoded format, ensuring that the original

data on the server remains encrypted. This design
effectively eliminates the risk of unauthorized
exposure of local files.

Performance Evaluation and Baseline
Comparison

The performance evaluation was conducted using a
series of benchmark tests across three file sizes: 1
MB, 10 MB, and 30 MB. The objective was to assess
the efficiency of the encryption and decryption
algorithms and to measure system resource
consumption, including memory (RAM) usage and
processor (CPU) load. All tests were conducted in a
cloud environment equipped with a multicore
processor and 4 GB of RAM. The encryption and
decryption processes were implemented using
OpenSSL-compatible cryptographic libraries. Each
benchmark scenario was executed 10 times to ensure
measurement consistency, and the reported results
represent the average execution times across all runs.
The observed performance variance remained within
acceptable bounds for system-level performance
evaluation, indicating stable and reproducible
benchmark outcomes, simulating realistic
operational conditions typical of an educational
institution using a Learning Management System
(LMS) [10],[11].

To further quantify the stability of results, standard
deviations were calculated for each benchmark
scenario. Across all file sizes, the standard deviation
of encryption and decryption times remained below
8% of the mean execution time, indicating low
dispersion between repeated runs. Additionally, a
95% confidence interval was computed, indicating
that the measured performance metrics fall within a
narrow range centered on the mean. These statistical
results demonstrate that the reported benchmark
values are reliable and not influenced by transient
system fluctuations, reinforcing the validity of the
performance evaluation.

The test results indicated that implementing the
AES-RSA-based Hybrid Encryption algorithm in
EduCrypt delivered efficient, stable performance,
even with large files. During the encryption phase, a
1 MB file was processed in 17-21 ms, with an
average memory usage of approximately 7 MB and
CPU usage fluctuating between 44 and 89%. For a
10 MB file, processing time ranged from 86 to 113
milliseconds, with RAM usage of approximately 83
MB and CPU usage between 47 and 71 percent. For
a 30 MB file, encryption times ranged from 221 to
280 milliseconds, with memory usage at 214 MB
and CPU usage ranging from 51 to 62 percent.

Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026 11

Decryption performance yielded comparable results
in terms of efficiency. A 1 MB file was decrypted in
10-37 milliseconds, using 7-15 MB of RAM. For a
10 MB file, decryption times ranged from 78 to 112
milliseconds, and for a 30 MB file, the decryption
process took between 228 and 276 milliseconds,
with relatively stable CPU usage of 45 to 62 percent,
as shown in Figure 4.

Analysis of the results reveals that the RSA
algorithm incurs minimal overhead, as it is used
solely to encrypt the AES key rather than the entire
file. This approach significantly reduces the
computational load while maintaining security [11]
[12]. The total encryption and decryption time for
large files remained under 300 milliseconds,
demonstrating the system's capability to manage
real-time digital education workloads effectively.

Furthermore, the measured memory and CPU
consumption, which scale with file size, indicate that
EduCrypt can function optimally on institutional
servers with mid-range specifications without
necessitating significant infrastructure upgrades.

While the previous benchmarks confirmed the
efficiency and stability of cryptographic operations
in isolation, a system-level performance comparison
was conducted to substantiate the reported up to
threefold performance improvement. This
evaluation focused on how architectural design
impacts end-to-end file synchronization, rather than
solely on cryptographic computations.

In this comparison, the proposed asynchronous
RabbitMQ-based worker architecture was evaluated
against a baseline sequential file synchronization
process under identical workload conditions. In the
baseline scenario, file synchronization tasks were
executed sequentially using a single worker.
Encryption, transmission, and storage operations
were performed in a blocking manner for each file
before moving on to the next task. This approach did
not use task parallelism or message queuing, relying
on a conventional synchronous file-handling
method.

In contrast, the proposed architecture utilized
RabbitMQ as a message broker to distribute file
synchronization tasks across multiple asynchronous
workers. Each worker performed encryption and
upload operations independently, enabling parallel
task execution while maintaining the same
cryptographic ~ mechanisms and hardware
environment used in the baseline scenario.

The experimental configuration for both scenarios,
including file size range (1-30 MB), number of files
per batch, total data volume, baseline definition, and
evaluation metrics, is summarized in Table 1. Each
batch consisted of multiple files whose combined
size was approximately 300-500 MB, derived by
aggregating individual files within the defined size
range. Both scenarios were executed on the same
cloud infrastructure to ensure a fair comparison.

Performance was evaluated using total processing
time, defined as the eclapsed time from the
submission of the first file synchronization request
until all files were successfully encrypted and stored,
and throughput, measured as the number of files
processed per second. Under these controlled
conditions, the asynchronous architecture
consistently achieved a reduction in total processing
time up to three times faster than the sequential
baseline. This improvement is attributed to reduced
idle waiting time and effective parallelization of
encryption and file transfer tasks, rather than
changes in cryptographic algorithms or system
resources.

To further evaluate EduCrypt's scalability, a
parallel-access scenario was simulated to assess the
system's behavior under multiple concurrent
encryption and decryption requests. The
asynchronous architecture of EduCrypt, built on
Node.js’s non-blocking I/0O and RabbitMQ-based
worker consumers, enabled parallel task execution
without significant performance degradation
[13],[14]. Even during simultaneous multi-user
operations, the system maintained stable throughput,
with latency only 12% higher than single-user
benchmarks.

CPU usage was efficiently distributed across
threads, and memory utilization scaled linearly with
the number of concurrent tasks. This confirms that
EduCrypt’s design can effectively handle the high
concurrency typical of multi-user Learning
Management System (LMS) environments [12].

Table 1. Performance Evaluation Scenario and Baseline

Comparison
Aspect Baseline Scenario Proposed
(Sequential) Architecture
(Asynchronous)
Processing Sequential, single- Asynchronous,
Model threaded event-driven

Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026

12
Aspect Baseline Scenario Proposed
(Sequential) Architecture
(Asynchronous)
Task Blocking (one file Parallel task
Execution processed at a time) handling via
asynchronous
workers
Message None RabbitMQ
Broker
File Size per 1-30 MB 1-30 MB
File
Number of 20 files 20 files
Files per
Batch
Total Data ~300-500 MB ~300-500 MB
Volume
Encryption AES-256 + RSA- AES-256 + RSA-
Mechanism 2048 + SHA-256 2048 + SHA-256
Execution Identical cloud Identical cloud
Environment infrastructure infrastructure
(multicore CPU, 4 (multicore CPU, 4
GB RAM) GB RAM)
Evaluation Total processing Total processing
Metrics time; throughput time; throughput
(files/sec) (files/sec)
Performance Sequential Up to 3x faster total
Observation completion with processing time

blocking execution

These findings indicate that EduCrypt not only
performs efficiently in single-session encryption and
decryption but also scales effectively under
concurrent workloads. This demonstrates its
readiness for deployment in real-world educational
institutions, where simultaneous file exchanges are
routine. Thus, it validates EduCrypt's performance-
aware and secure-by-design architecture.

Security Evaluation

The security evaluation of EduCrypt was conducted
through a series of controlled attack simulations to
assess the strength of its encryption mechanisms and
the resilience of its system architecture under
realistic threat assumptions (Figure 9).

Encryption vs Decryption Time based on File Size
250 4 —®— Encription (ms)
Decription (ms) /

200

150

Time (ms)

100
50 /

200 | —8— RAM Use (MB)
CPU Use (%)

Resource Usage by File Size

175 4
150 1
125 4

100 4

50 4
251
0 5 10 15 20 25 30

File Size (MB)

Figure 9. File Encryption-Decryption Performance

RAM / CPU Usage

The evaluation was based on a defined threat model
in which attackers are assumed to possess network-
level visibility and the ability to interact with
exposed application interfaces, but without direct
access to server-side private keys, internal memory,
or protected cryptographic materials. All
communications were secured using HTTPS/TLS,
and security testing focused on evaluating
confidentiality, integrity, and access control within
these constraints.

The evaluation focused on three major attack
categories: brute-force attacks on encryption keys,
SQL injection attacks on database queries, and man-
in-the-middle (MITM) interception of data in transit.
In the brute-force test, AES-256 was used as the
symmetric encryption standard [14]. The strength of
AES-256 derives from its 256-bit key space, which
contains approximately 27256 possible keys. This
makes an exhaustive key search practically
impossible with current and foreseeable computing
capabilities. In EduCrypt, AES keys are generated
using cryptographically secure random functions,
ensuring they are never derived from user passwords
or short character-based secrets. As a result, the
resistance to brute-force attacks is assessed using the
AES-256 key space, rather than relying on

Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026 13

simplified assumptions about password length.
Additionally, RSA-2048 is used exclusively to
encrypt AES session keys, ensuring secure key
distribution even if the encrypted file data is
intercepted.

The second test focused on SQL injection
vulnerabilities within EduCrypt’s API endpoints.
All backend modules were built using parameterized
queries and strict input validation mechanisms [15].
Testing was conducted using automated penetration
tools, such as SQLMap, and custom injection
scripts; no successful injection attempts were
recorded across more than 500 test queries. The
success rate was therefore 0%, demonstrating that
EduCrypt’s backend data access layer effectively
mitigates common injection-based exploits through
its secure query architecture and ORM-based query
handling.

In the man-in-the-middle (MITM) simulation, Burp
Suite was used as a proxy to intercept and analyze
traffic between the EduCrypt client and server. All
intercepted traffic consisted solely of Base64-
encoded ciphertext transmitted over HTTPS [16],
with no identifiable plaintext or metadata leakage.
The AES-encrypted file data and RSA-encrypted
session keys were successfully preserved throughout
transmission, preventing decryption or inference by
external agents. This illustrates that EduCrypt’s
combination of hybrid encryption and transport-
layer security ensures end-to-end confidentiality and
integrity.

In addition to cryptographic and transport-layer
security, we evaluated application-level security
risks related to authentication token handling.
Storing authentication tokens in browser-accessible
storage, like local storage, can expose them to cross-
site scripting (XSS) attacks, which may steal session
credentials and weaken access control.

To mitigate this risk, EduCrypt employs a defense-
in-depth strategy. We enforce strict input validation
and output sanitization across user-facing
components to reduce XSS vulnerabilities. A
Content Security Policy (CSP) restricts script
execution to trusted origins, further reducing the risk
of attacks.

For stronger session isolation, EduCrypt uses HTTP-
only and Secure cookies to store tokens. The
httpOnly attribute prevents JavaScript access,
reducing the risk of token theft, while the Secure flag
ensures that tokens are transmitted only over

encrypted HTTPS. We also implement token
expiration and rotation to limit credential validity
and reduce the impact of any compromise.

By addressing client-side token storage risks and
implementing layered protections, including CSP
enforcement, sanitization, secure cookies, and token
lifecycle controls, EduCrypt strengthens its security
posture, ensuring confidentiality, integrity, and
access control throughout the authentication and
session management lifecycle.

Overall, the results confirm that EduCrypt provides
a strong defense against both standard and advanced
security threats. The layered encryption model (AES
+ RSA) and the secure API implementation create a
resilient framework that ensures data confidentiality,
authenticity, and integrity, even in simulated
adversarial conditions [17]. These findings reinforce
EduCrypt's effectiveness as a secure-by-design
solution for file sharing in cloud-based educational
ecosystems.

Discussions and Future Works

The results from the implementation and evaluation
of EduCrypt demonstrate that the proposed hybrid
encryption-based architecture achieves a well-
balanced combination of security, performance, and
system usability, particularly within Learning
Management System (LMS) environments.
Compared to previous studies on secure cloud file
sharing, EduCrypt offers several distinctive
advantages that address the limitations identified in
earlier research.

Prior hybrid encryption studies, such as those by
Durge and Deshmukh and Al-Bayati, primarily
focused on enhancing cryptographic strength in
general cloud storage scenarios. While these works
successfully improved security through AES-RSA
combinations, they did not evaluate real-time
integration with LMS platforms or assess the impact
of encryption on educational workflows. In contrast,
EduCrypt extends the hybrid encryption paradigm
by embedding it directly into Moodle-based LMS
operations, enabling encrypted file handling without
altering existing interactions between lecturers and
students. This integration-oriented approach
represents a significant advancement beyond purely
algorithmic evaluations.

From a performance perspective, EduCrypt's
benchmark results compare favorably with those of
similar encryption-based systems reported in the
literature. Studies that combine AES with

14 Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026

asymmetric schemes report encryption latencies
exceeding 500 ms for files larger than 20 MB,
especially when key management is not optimized
or when encryption is applied synchronously. In this
study, EduCrypt maintained encryption and
decryption times below 300 ms for files up to 30
MB, indicating that the selective use of RSA solely
for AES key encapsulation significantly reduces
computational overhead. This supports Singh and
Garg's findings on the efficiency of hybrid
encryption and further demonstrates its applicability
to real-time LMS environments.

In terms of scalability, most existing secure cloud
file-sharing solutions rely on sequential processing
or centralized encryption services, which can
become bottlenecks under concurrent access.
EduCrypt differentiates itself by adopting an
asynchronous, RabbitMQ-based worker architecture
that enables parallel file synchronization and
encryption tasks. The simulated multi-user access
scenario showed only a 12% increase in latency
compared to single-user benchmarks. This result
outperforms many LMS-integrated security
solutions reported in previous studies, where
performance degradation under concurrency is often
significant. This highlights EduCrypt’s suitability
for high-concurrency academic environments, such
as during assignment submission deadlines.

The security evaluation results further position
EduCrypt competitively within the state of the art.
Similar to previous hybrid encryption frameworks,
EduCrypt demonstrated strong resistance to brute-
force attacks due to the use of AES-256 and RSA-
2048. However, unlike several earlier works that
focused solely on cryptographic strength, this study
also evaluated application-layer security through
SQL injection testing and man-in-the-middle
(MITM) simulations. The absence of successful
SQL injection attempts and the interception of only
ciphertext during MITM testing confirms that
EduCrypt provides multi-layered security
protection, combining cryptographic robustness
with secure API and communication design.

Despite these strengths, EduCrypt inherits
limitations common to hybrid encryption systems.
Although asymmetric cryptographic operations are
minimized, they still introduce non-negligible
overhead in extremely high-load scenarios, such as
simultaneous large-file uploads by hundreds of
users. While the current architecture mitigates this
through asynchronous processing, further
optimization such as key-caching strategies or

hardware-assisted cryptography remains a potential
area for improvement. This limitation aligns with
observations in prior hybrid encryption studies that
note similar scalability challenges when asymmetric
operations are involved.

Future work will focus on addressing the limitations
of EduCrypt to transform it from a research
prototype into a production-ready platform. Planned
enhancements include implementing auto-scaling
worker orchestration wusing containerization
technologies such as Docker and Kubernetes,
thereby improving load balancing and resilience.
Additionally, future evaluations will extend beyond
the current single-cloud deployment to include
multi-cloud environments, such as AWS, Azure, and
Google Cloud, to assess fault tolerance and high
availability.

Further security improvements may include
adopting elliptic curve cryptography (ECC) for key
exchange, enabling optional client-side encryption,
and integrating blockchain-based audit trails for
immutable access logging.

In summary, EduCrypt advances the state of the art
by bridging the gap between cryptographic theory
and practical implementation of learning
management systems (LMSs). By combining
efficient hybrid encryption and asynchronous
techniques, it enhances both security and usability.

CONCLUSIONS

The development of EduCrypt, a secure file-sharing
platform for cloud-based e-learning environments,
effectively demonstrates the feasibility and benefits
of integrating Hybrid Encryption (AES-256 + RSA-
2048) to ensure data confidentiality, integrity, and
controlled access within digital education systems.
By combining AES for high-speed symmetric
encryption with RSA for secure key distribution,
EduCrypt strikes a balanced trade-off between
performance efficiency and cryptographic strength,
which is crucial for protecting academic data in
modern Learning Management System (LMS)
ecosystems.

Performance testing across file sizes (1 MB, 10 MB,
and 30 MB) shows that EduCrypt maintains
encryption-decryption ~ latency under 300
milliseconds, even during concurrent user
operations. The system’s CPU and memory usage
remained within acceptable limits (below 62% CPU

Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026 15

and 214 MB RAM at peak load), confirming its
efficiency and scalability on mid-range institutional
servers. The use of RabbitMQ-based asynchronous
workers further enhances throughput during parallel
access, ensuring that the system can handle the
multi-user environments typical of cloud-based e-
learning without significant performance
degradation.

Security simulations, including brute-force, SQL
injection, and man-in-the-middle (MITM) attacks,
demonstrate that EduCrypt’s architecture effectively
resists common attack vectors. The complexity of
the AES keyspace makes brute-force attempts
computationally infeasible, while parameterized
queries and HTTPS-secured communication
channels ensure database integrity and prevent the
exposure of plaintext data.

From an implementation standpoint, the system’s
modular architecture, built with Node.js, Go, and a
JavaScript-based frontend, facilitates seamless
integration with the Moodle LMS via RESTful APIs.
This interoperability allows EduCrypt to function as
a plug-in or companion service, providing
transparent encryption and decryption processes
without disrupting existing LMS workflows.

In conclusion, EduCrypt meets its design objective
as a secure, performance-oriented platform tailored
for the education sector. It offers a practical
framework for protecting sensitive academic data
while ensuring usability and interoperability. Future
development will focus on expanding multi-cloud
scalability, integrating adaptive encryption policies,
and enhancing user analytics to solidify further
EduCrypt’s position as a trusted security layer for
digital learning environments.

ACKNOWLEDGMENTS

The authors would like to express their sincere
gratitude to the Lembaga Penelitian, Inovasi, dan
Pengabdian kepada Masyarakat (LPIPM) of
Universitas Al-Azhar Indonesia for providing
financial support through the Stimulus Research
Grant (SRG) scheme 2025 and institutional
facilitation that made this research possible.

REFERENCES

[1] G. Singh and M. Garg, “Enhanced cloud security
using hybrid mechanism of RSA, AES, and
Blowfish data encryption with secure OTP”

International Journal of Computers &
Technology, vol. 18, pp. 7364-7380, 2018, doi
10.24297/ijct.v18i0.7898

[2] C. Susmitha, S. Srineeharika, K. S. Laasya, S.
K. Kannaiah, and S. Bulla, “Hybrid
cryptography for secure file storage,” in Proc.
7th Int. Conf. on Computing Methodologies and
Communication (ICCMC), 2023, pp. 1151-
1156.

[3] R. S. Durge and V. M. Deshmukh, “Securing
cloud data: A hybrid encryption approach with
RSA and AES for enhanced security and
performance,” Journal of Integrated Science
and Technology, vol. 13, no. 3, pp. 1060-1068,
2025, doi
10.62110/sciencein.jist.2025.v13.1060.

[4] Y.M. A. Abualkas and D. L. Bhaskari, “Hybrid
Approach to Cloud Storage Security Using
ECC-AES Encryption and Key Management
Techniques,” International Journal of
Engineering Trends and Technology, vol. 72,
no. 4, pp. 92-100, Apr. 2024, doi
https://doi.org/10.24017/science.2025.1.5.

[5] A. S. Al-Bayati, Enhancing Performance of
Hybrid AES, RSA and Quantum Encryption
Algorithm. Ph.D. dissertation, Anglia Ruskin
Research Online (ARRO), 2023.
https://hdl.handle.net/10779/aru.23768127.

[6] R.A.Fathimaand S. Arumugam, “A novel data
transmission model using hybrid encryption
scheme for preserving data integrity,” Advances
in Technology and Innovation, vol. 9, no. 2, p.
14114, 2024, doi
https://doi.org/10.46604/aiti.2024.14114.

[71 R. Saini and N. Sainis, “Cryptographic hybrid
model—An advancement in cloud computing
security: A survey,” International Journal of
Engineering Research and Technology, vol. 11,
no. 6,2022, doi 10.17577/1IJERTV111S060145.

[8] R. S. Pressman, Sofiware Engineering: A
Practitioner’s Approach. Palgrave Macmillan,
2005.

[9] R. L. Rivest, A. Shamir, and L. Adleman, “A
method for obtaining digital signatures and
public-key cryptosystems,” Communications
of the ACM, vol. 21, no. 2, pp. 120-126, 1978,
doi https://doi.org/10.1145/359340.359342.

[10] P. Shayan, R. Rondinelli, M. van Zaanen, and
M. Atzmueller, “Multi-level analysis of
learning management systems’ user acceptance
exemplified in two system case studies,” Data,
vol. 8, mno. 3, p. 45, Feb. 2023. doi:
10.3390/data8030045.

[11] P. Chatterjee, R. Bose, S. Banerjee, and S. Roy,
“Enhancing data security of cloud-based

https://doi.org/10.24297/ijct.v18i0.7898
https://doi.org/10.62110/sciencein.jist.2025.v13.1060
https://doi.org/10.24017/science.2025.1.5
https://hdl.handle.net/10779/aru.23768127
https://doi.org/10.46604/aiti.2024.14114
https://doi.org/10.1145/359340.359342

16 Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026

LMS,” Wireless Personal Communications,
vol. 130, no. 2, pp. 1123-1139, 2023, doi
10.1007/s11277-023-10323-5.

[12] M. Anghel and G. C. Pereteanu, “Cyber security
approaches in e-learning,” in Proc.
INTED2020 Conf., 2020, pp. 4820-4825,
IATED.

[13] R. I. Akter, M. A. Khan, F. A. Rahman, S. J.
Soheli, and N. J. Suha, “RSA and AES-based
hybrid encryption technique for enhancing data
security in cloud computing,” International
Journal of Computational and Applied
Mathematics & Computer Science, vol. 3, pp.
60-71, Oct. 2023, doi
10.37394/232028.2023.3.8.

[14] P. Ghiya, TypeScript Microservices: Build,
deploy, and secure Microservices using
TypeScript combined with Node.js.
Birmingham, UK: Packt Publishing Ltd, 2018.

[15] S. Kumar and D. Kumar, “Securing of cloud
storage data using hybrid AES-ECC
cryptographic approach,” Journal of Mobile
Multimedia, vol. 19, no. 2, pp. 363—388, Mar.
2023, doi https://doi.org/10.13052/jmm1550-
4646.1921.

[16] S. S. Nair, “Securing against advanced cyber
threats: a comprehensive guide to phishing,
XSS, and SQL injection defense,” Journal of
Computer Science and Technology Studies,
vol. 6, no. 1, pp. 76-93, Jan. 2024. doi:
10.32996/jcsts.2024.6.1.9.

[17] E. AR, M. G., and D. T., “Enhancing security in
data exchange: mitigating risks solutions in
Base64 encoding and JSON Web Tokens,” in
Proc. 2024 Int. Symp. on Electronics and
Telecommunications (ISETC), Nov. 2024, pp. 1-
4.

[18] K. Hashizume, D. G. Rosado, E. Fernandez-
Medina, and E. B. Fernandez, “An analysis of
security issues for cloud computing,” Journal
of Internet Services and Applications, vol. 4,
pp- 1-13, Dec. 2013, doi 1186/1869-0238-4-5.

https://doi.org/10.1007/s11277-023-10323-5
https://doi.org/10.37394/232028.2023.3.8
https://doi.org/10.13052/jmm1550-4646.1921
https://doi.org/10.13052/jmm1550-4646.1921
https://doi.org/10.1186/1869-0238-4-5

