

Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI

Vol. 11, Nomor 01, January 2026, hal. 1- 16

DOI http://dx.doi.org/10.36722/sst.v11i1.5086 https://jurnal.uai.ac.id/index.php/SST

Received: 16 November 2025, Accepted: 19 December 2025, Published: 07 January 2025

EduCrypt: A Secure File Data Sharing Platform using

Hybrid Encryption for Cloud-Based E-Learning

Andi Arniaty1, Riri Safitri1, Lambda Sangkala Murbawisesa1

1Informatics Department, Faculty of Science & Technology, Universitas Al-Azhar Indonesia,

Jl. Sisingamangaraja, Kebayoran Baru, DKI Jakarta, 12110.

Corresponding author/E-mail: andi.arniaty@uai.ac.id

Abstract – The rise of cloud-based learning environments has transformed education but has also exposed

vulnerabilities in data security. Learning Management Systems (LMSs) often handle sensitive academic

data without adequate protection, leaving it vulnerable to unauthorized access and data breaches. This

study introduces EduCrypt, a secure file-sharing platform that uses hybrid encryption, combining AES

for fast data encryption and RSA for secure key exchange. In this research, a Hybrid Waterfall–Iterative

method was used as the overarching research methodology to guide requirements analysis, architectural

design, system implementation, and evaluation. EduCrypt integrates seamlessly with Moodle LMS via

token- and credential-based authentication. Its architecture includes asynchronous RabbitMQ workers

for efficient synchronization and a user-friendly web interface for secure file operations. Benchmark tests

demonstrate stable encryption and decryption times under 300 ms for files up to 30 MB, showcasing both

scalability and efficiency. Security evaluations confirm that EduCrypt effectively mitigates brute-force

attacks, SQL injection, and man-in-the-middle attacks. This research resulted in a validated

enhancement in file security practices for LMS through the implementation of a hybrid cryptographic

model. Furthermore, the outcome includes a fully functional EduCrypt prototype integrated with

Moodle, along with performance and security evaluation results.

Keywords - Data Security, Hybrid encryption, File sharing, E-learning, Cloud computing.

INTRODUCTION

n the global digital era, technological

transformation has significantly reshaped the

educational landscape, particularly through the

adoption of cloud-based learning environments,

such as Learning Management Systems (LMS).

These platforms enable lecturers and students to

share materials, assignments, and research

documents more conveniently and efficiently.

However, as the use of digital platforms expands,

data security has become an increasingly critical and

complex issue. Incidents of data leakage, file

tampering, and unauthorized access to academic

documents are now common in educational

institutions [1].

Several factors contribute to these vulnerabilities,

including weak encryption, insufficient access

control policies, and low user awareness of data

protection. Many file-sharing systems in academic

settings still rely on basic or even no encryption,

making them highly susceptible to data misuse and

cyberattacks. Previous studies have indicated that

cloud systems in the education sector are particularly

vulnerable to security breaches due to weak

encryption or the lack of additional protection during

file transfers. According to Singh and Garg [1], and

C. Susmitha et. al [2], nearly 70% of data leakage

incidents in the education sector occur due to the

absence of robust encryption mechanisms. Within

LMS environments, unprotected file-sharing

practices create opportunities for threats such as data

modification, malware injection, and academic

identity theft.

To address these risks, numerous studies have

focused on developing secure cloud-based file-

sharing systems. One widely adopted approach is

hybrid encryption, which combines the strengths of

I

2 Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026

two algorithms: AES (Advanced Encryption

Standard) for high-speed symmetric encryption and

decryption, and RSA (Rivest–Shamir–Adleman) for

secure asymmetric key distribution. Research by

Durge and Deshmukh [3] demonstrated that

combining AES and RSA significantly enhances

data security in cloud computing compared to using

either algorithm independently. However, most

existing studies focus primarily on algorithmic

performance rather than end-to-end system

integration within LMS. Many of these works

evaluate encryption in isolation rather than as part of

a complete educational workflow, creating a

research gap regarding the practical deployment of

encryption and its impact on real-world teaching and

learning ecosystems.

Additionally, most prior studies have focused on

general cloud environments, overlooking the

specific requirements of educational settings such as

integration with LMS platforms, support for

efficient teaching and learning workflows, and

usability for both lecturers and students. This gap in

the literature underpins the present study. To fill this

gap, this research develops EduCrypt, a hybrid-

encryption-based file security platform specifically

designed for digital education. Unlike previous

approaches, this study employs a structured research

and system development methodology, specifically,

a Hybrid Waterfall-Iterative model [8]. This model

enables both formal requirements analysis and

continuous refinement based on user workflows in

real academic environments. This methodological

clarity sets the study apart from previous works that

focus solely on encryption mechanisms without

considering their practical integration.

Several studies have proposed encryption-based

methods for ensuring the security of cloud data.

However, most of these methods rely on a single

encryption technique - either symmetric or

asymmetric - without leveraging the strengths of

both. Additionally, many file-sharing systems built

on Learning Management Systems (LMSs) still rely

on basic access controls without robust encryption.

For example, Durge and Deshmukh [3] introduced a

hybrid AES-RSA approach that enhances both

performance and security in cloud data storage.

Singh and Garg [1] enhanced cloud security by

combining RSA, AES, and Blowfish with secure

One-Time Password (OTP) functionality, resulting

in significant improvements in data protection.

Abualkas and Bhaskari [4] presented a hybrid ECC-

AES approach that focuses on efficient key

management in cloud environments. Al-Bayati AS

[5] demonstrated a hybrid AES-RSA model that

shows increased resistance to brute-force attacks.

Fathima and Arumugam [6] developed a new data

transmission model integrating RSA with

ChaCha20-Poly1305 to ensure data integrity. Lastly,

Saini and Sainis [7] proposed a modular hybrid

encryption framework that combines AES block

encryption with Feistel networks.

Despite these advancements, there is a noticeable

gap in the literature regarding the direct integration

of hybrid encryption into LMS platforms commonly

used in educational settings. Furthermore, most

existing approaches have not adequately considered

user experience, particularly for non-technical users

such as lecturers and students, when adopting secure

digital systems. This study differs from current

research by not only examining algorithmic

performance but also considering LMS-level

interoperability, workflow alignment, asynchronous

file processing using RabbitMQ, and usability

challenges unique to educational environments -

areas that have been largely overlooked in the

literature.

This research introduces EduCrypt, an innovative

secure file-sharing system based on hybrid

encryption, designed explicitly for cloud-based e-

learning. EduCrypt’s key contributions include

integrating hybrid encryption into educational

environments, using AES for efficient data

encryption, and RSA for secure key management. It

also optimizes encryption efficiency to ensure the

system remains secure and fast while providing a

seamless user experience. EduCrypt offers easy

integration with existing LMS infrastructures,

ensuring that institutional workflows are not

disrupted. Additionally, it adopts a Hybrid

Waterfall-Iterative development model to facilitate

structured yet adaptive system development that

aligns with user requirements and continuous

security validation. By integrating a clear research

method with a system-level implementation that is

directly compared with existing studies, this work

reinforces the methodological foundation of

EduCrypt and firmly situates it within current

scholarly discourse.

Based on these motivations, this study aims to

explore how an effective secure file-sharing system

can be implemented in digital learning

environments. It will investigate how hybrid

encryption methods can enhance data protection in

cloud-based e-learning systems and how such

Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026 3

systems can maintain high processing efficiency for

encrypted data without compromising usability or

access speed. To meet these objectives, EduCrypt is

proposed as a comprehensive, scalable, and user-

friendly platform that strengthens data

confidentiality and integrity in modern digital

education.

METHOD

EduCrypt was developed using a Hybrid Waterfall-

iterative model that combines the structured phases

of the Waterfall method with the flexibility of

iterative development. The research activities within

this framework included requirements analysis,

system design, and implementation, all integrated

with testing. Instead of focusing on full operational

deployment, the final stage of this study emphasizes

evaluation and validation. This includes

performance benchmarking, security testing, and

deployment readiness assessment. This

methodological approach aligns with the study's

research-oriented goals, prioritizing system

correctness, security, and performance validation

over a large-scale operational rollout. The overall

structure uses a Waterfall-style approach to maintain

stable requirements and clear architecture. Iterative

cycles are integrated within certain phases, such as

system implementation and testing. During these

phases, components are repeatedly developed,

tested, and refined based on performance and

security feedback without altering initial

requirements. Thus, iteration occurs at the micro

level rather than across all phases, in line with hybrid

Software Development Life Cycle (SDLC)

practices.

The iterative component strengthens the structured

framework by promoting continuous improvement

in implementation outcomes informed by evaluation

results. Feedback from performance measurements

and security assessments is used to iteratively refine

system components. This ensures that each cycle

improves functional correctness, security

compliance, and performance efficiency. This

iterative refinement process allows the system to

evolve systematically while remaining aligned with

established research objectives.

The diagram in Figure 1 outlines the implementation

and validation workflow of EduCrypt,

distinguishing it from a conventional Waterfall

model. It illustrates how the structured phases of

requirements analysis and system design lead into

iterative cycles of implementation, testing,

evaluation, and validation. This representation

captures the research process employed in this study,

underscoring the continuous evaluation and

validation required to refine the EduCrypt system

before its consideration for real-world deployment.

Requirements Analysis

The research process began with a requirements

analysis phase that focused on identifying security

risks and assessing user needs within Moodle-based

LMS. This phase examined how academic files such

as assignments, lecture materials, and research

documents are stored, accessed, and transmitted in

typical LMS environments.

Figure 1. EduCrypt research process and system

implementation workflow.

The analysis revealed that many LMS file-sharing

mechanisms rely primarily on access control policies

and do not implement cryptographic protection at

the file level. Consequently, sensitive academic data

remains vulnerable to unauthorized access, file

tampering, and interception during data

transmission.

4 Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026

Simultaneously, user needs were evaluated through

direct observations and informal discussions with

lecturers and students to understand their

expectations and real-world interactions with LMS

platforms. The findings indicated that while users

prioritize ease of access, efficiency, and seamless

integration with existing workflows, they generally

have low awareness of file-level security risks.

Notably, both lecturers and students emphasized that

any additional security mechanisms should operate

transparently, without introducing extra complexity

or disrupting established teaching and learning

processes.

This requirements analysis phase established the

core design constraints and functional requirements

for EduCrypt. By aligning identified security risks

with actual user behavior and institutional

workflows, this stage ensured that the proposed

system addresses critical vulnerabilities while

maintaining usability, efficiency, and compatibility

with existing Moodle-based LMS infrastructures.

The outcomes of this phase directly informed

subsequent design and implementation decisions for

the system.

System Design

Following the requirements analysis, the research

entered the system design phase, in which the overall

architecture and security mechanisms for EduCrypt

were clearly defined. During this stage, a hybrid

encryption scheme was developed to balance strong

security with operational efficiency. AES-256 was

chosen as the symmetric encryption algorithm for

encrypting file contents due to its high performance

and suitability for handling large volumes of data.

RSA-2048 was utilized for asymmetric encryption,

providing secure protection and distribution of the

AES session keys. Additionally, SHA-256 hashing

was implemented to verify file integrity and detect

unauthorized modifications.

The system architecture was designed using a

modular approach that separates core functionalities

into backend services, frontend interfaces, and

components for asynchronous processing. The

frontend component serves as the primary user

interface, providing essential functions such as

registration, authentication, dashboard navigation,

file management, and institutional integration. It is

designed to deliver an intuitive, responsive user

experience while maintaining strict access controls.

The backend serves as the platform's core, managing

encryption and decryption, handling API

interactions, and facilitating communication with

the LMS. It implements user authentication using

JSON Web Tokens (JWTs) with a 72-hour

expiration period, ensuring secure, time-sensitive

access.

Communication between EduCrypt and the Moodle

LMS is managed through a dedicated integration

layer that uses RESTful APIs supporting both token-

and credential-based authentication. This dual

approach allows for flexible deployment across

various institutional environments. To enhance

scalability and efficiency, EduCrypt employs an

asynchronous worker system powered by

RabbitMQ, enabling parallel processing for context

ID scanning and large-scale synchronization of user

data and course files.

All encrypted files are stored in a secure repository,

where data is protected using the AES-256

algorithm. RSA is used to secure encryption keys

and manage key exchange [9], while the SHA-256

hash algorithm ensures data integrity by preventing

unauthorized modification or corruption of stored

files.

The interaction among various components,

including the Moodle API, the integration layer, a

hybrid encryption engine using AES-256, RSA-

2048, and SHA-256, and secure storage, is

illustrated in Figure 2. This figure shows the entire

workflow of EduCrypt's system architecture, from

file synchronization in Moodle to encryption,

storage, and secure end-user retrieval. Figure 3

illustrates the complete file upload and download

process, emphasizing the interactions among actors,

cryptographic operations, integrity verification, and

conditional access control within the system.

A multi-university data model was created to ensure

scalability across different institutions. An Entity-

Relationship Diagram (ERD) was developed to

model multiple universities, users, courses, and file

repositories within a single deployment of

EduCrypt. This design guarantees data isolation

between institutions while enabling centralized

management and extensibility. Overall, the system

design phase effectively transformed security

requirements and user needs into a robust, scalable

architecture that is compatible with learning

management systems (LMS). This architecture

serves as the foundation for the implementation and

evaluation stages of the EduCrypt research.

Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026 5

Figure 2. System Architecture and Module

Decomposition of EduCrypt

Figure 3. Activity Diagram of Secure File Upload and

Download Workflow in EduCrypt

System Implementation

The system implementation stage translated the

conceptual design of EduCrypt into a fully

functional research prototype. During this stage, all

architectural components were developed through

concrete backend and frontend processes, ensuring

they aligned with the defined security requirements

and user needs.

On the backend, EduCrypt implemented a secure

authentication mechanism using JSON Web Tokens

(JWT) with a designated validity period to manage

user sessions and access control. To ensure broad

compatibility with Moodle-based LMS, two

integration methods were supported: token-based

authentication for institutional administrators and

advanced users, and credential-based authentication

using a username and password for non-technical

users. The backend also managed the automated

synchronization of academic data, including

courses, assignments, submissions, and private user

files. To enhance scalability and performance, a

RabbitMQ-based worker system was integrated to

asynchronously scan and process context IDs,

enabling parallel file synchronization and reducing

processing latency. All file-related operations were

secured through an automated hybrid-encryption

workflow, in which files are encrypted upon

retrieval from Moodle and decrypted only upon

authorization.

On the frontend, EduCrypt provided a web-based

interface designed to support common academic

workflows without disrupting the user experience.

Core interfaces included login and registration

pages, a dashboard for system overview, course

listings, private file management, and a university

integration configuration page. Additional interfaces

were created to display detailed file information and

performance benchmarks, accessible exclusively to

administrative users. File downloads were handled

transparently via server-side decryption, ensuring

that encrypted files remain protected at rest while

users receive plaintext files without requiring any

additional technical steps.

This implementation stage signifies the operational

realization of EduCrypt as a secure, scalable, and

user-oriented file-sharing platform. By integrating

cryptographic mechanisms, asynchronous

processing, and LMS-compatible workflows, the

implementation demonstrates how hybrid

encryption can be effectively integrated into cloud-

based educational environments while maintaining

both performance efficiency and usability.

6 Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026

Technical Testing

Following the system implementation, technical

testing was conducted as a crucial validation stage to

evaluate both the performance efficiency and

security robustness of EduCrypt under realistic

operating conditions. The performance evaluation

focused on systematic benchmarking of encryption

and decryption using three representative file sizes -

1 MB, 10 MB, and 30 MB - to reflect typical

academic file sizes in LMS. For each scenario,

detailed measurements of processing latency, CPU

utilization, and RAM consumption were collected to

assess computational overhead and resource

efficiency. The results demonstrated stable, scalable

performance, with encryption and decryption times

remaining within acceptable real-time thresholds

even for large files. This confirms the suitability of

the AES-RSA hybrid approach for cloud-based

educational workloads.

In parallel, comprehensive security testing was

performed through controlled attack simulations to

validate the system’s defensive capabilities. Brute-

force attack simulations were conducted to evaluate

resistance to key-guessing attempts, confirming that

exhaustive search is infeasible for compromising

AES-256-encrypted content. Man-in-the-middle

(MITM) simulations were conducted by intercepting

network traffic to verify that only encrypted,

Base64-encoded ciphertext was exposed during

transmission, with no leakage of plaintext or

sensitive metadata. Additionally, SQL injection

attempts were systematically tested across backend

API endpoints to assess input handling and query-

execution security, resulting in no successful

exploits due to the use of parameterized queries and

strict validation mechanisms.

Collectively, these technical tests confirm that

EduCrypt meets both performance and security

requirements, validating its readiness for

deployment in real-world LMS-based educational

environments.

Evaluation and Validation

The final stage of the research focused on evaluating

and validating EduCrypt to ensure it met both

technical and institutional requirements within a real

educational environment. During this stage,

EduCrypt was integrated with the Learning

Management System (LMS) at Universitas Al-

Azhar Indonesia (UAI) to verify its interoperability,

functional correctness, and operational stability in an

authentic academic setting. This integration process

confirmed that EduCrypt could securely synchronize

courses, assignments, submissions, and private files

without disrupting existing LMS workflows for

lecturers and students.

Comprehensive security and performance validation

was conducted by assessing the system under

realistic usage scenarios. Encryption and decryption

operations were tested to ensure consistent

performance across different file sizes while

maintaining confidentiality and integrity. Access

control mechanisms were evaluated through role-

based restrictions, ensuring that sensitive operations

- such as file encryption, decryption, and benchmark

visualization - were accessible only to authorized

administrative roles. Role-based user interface

validation was conducted through functional testing

rather than formal usability evaluation. A researcher

served as an administrator, while a student assumed

the end-user role. Each tester followed predefined

interaction scenarios, such as file upload, download,

and access to encryption and decryption features.

The purpose was to verify that the UI correctly

enforced role-based access policies, not to assess

user experience. The results showed that UI

elements adapted to user roles, with restricted

functions remaining inaccessible to unauthorized

users. This validation confirmed that EduCrypt

enforces the principle of least privilege while

maintaining functional accessibility for non-

technical users.

Additionally, system-level validation was performed

on the API layer, with a focus on secure token

handling, robust authentication, and request

isolation. JWT-based session management was

tested for reliability and expiration enforcement, and

detailed logging mechanisms were implemented and

validated to support auditability, error tracing, and

incident analysis. These evaluations demonstrated

that EduCrypt not only functions as intended but also

adheres to secure-by-design principles, ensuring its

readiness for controlled deployment within

institutional LMS infrastructures and future

scalability across broader educational environments.

Hybrid Encryption Mechanism and Key

Management

EduCrypt employs a Hybrid Encryption approach

that balances processing efficiency with robust

security, protecting files in cloud-based learning

environments. This mechanism integrates three

main algorithms: AES-256 (Advanced Encryption

Standard) for symmetric encryption to enhance file

content security, RSA-2048 (Rivest-Shamir-

Adleman) for asymmetric encryption to facilitate

Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026 7

secure key distribution among users, and SHA-256

(Secure Hash Algorithm) as a hash function to

maintain file integrity, guaranteeing that no data

changes occur during transmission or storage.

The hybrid encryption process in EduCrypt begins

by generating an RSA key pair comprising a public

and a private key. The public key is stored on the

server for encryption purposes, while the private key

is securely held by authorized users. When a file is

uploaded to the system, EduCrypt randomly

generates a unique AES session key for that file. The

file is then encrypted using this session key, yielding

a ciphertext. Subsequently, the AES key used for

encryption is re-encrypted with the recipient's RSA

public key, preventing unauthorized parties from

accessing the key distribution.

Both the ciphertext and the encrypted AES key are

stored securely. During decryption, an authorized

user employs the RSA private key to unlock the AES

key, after which the system decrypts the file using

that session key, restoring the data to its original

form. Once decryption is complete, EduCrypt

computes the SHA-256 hash of the decrypted file

and compares it with the original hash to verify data

integrity.

To ensure end-to-end data integrity, EduCrypt

employs SHA-256 hashing at two key stages of the

file lifecycle. First, a SHA-256 hash is computed

immediately after the file is received and before

encryption. This initial hash acts as the integrity

fingerprint of the plaintext file. The SHA-256 hash

is securely stored as immutable metadata with the

encrypted file record in the database, protected by

access controls. By binding the hash to the file

identifier, user authorization context, and upload

timestamp, EduCrypt prevents unauthorized

modifications to the integrity metadata. During

retrieval, the encrypted file is decrypted with the

AES session key, and a new SHA-256 hash is

computed from the plaintext. This hash is compared

to the original stored hash; only a match allows the

file to be processed further. Any mismatch triggers

handling of integrity violations, rejecting the file to

prevent access to corrupted data. This two-stage

hashing mechanism ensures integrity throughout

storage, transmission, and decryption. By separating

integrity verification from encryption processes,

EduCrypt effectively detects unauthorized

modifications at any stage.

In terms of key management, EduCrypt implements

a strict separation between the lifecycles of

symmetric and asymmetric keys. RSA key pairs are

generated for each user during the registration or

integration phase. The RSA public key is stored on

the server and used solely to encrypt AES session

keys, whereas the RSA private key is never

transmitted over the network. The private keys are

securely stored on the server in an encrypted format

and are only accessible during authorized decryption

processes, governed by strict role-based access

control.

AES keys are dynamically generated as one-time

session keys for each file operation, ensuring

forward secrecy at the file level. These session keys

are discarded immediately after encryption or

decryption completes and are never reused across

files. This design prevents key reuse attacks and

minimizes the impact of any potential key exposure.

Key rotation and revocation are implicitly enforced

through session-based access control. When a user

account is revoked, tokens expire, or access rights

are modified, the associated RSA private keys

become inaccessible, effectively preventing further

decryption of protected files. Moreover, AES keys

are never stored in plaintext, and all encrypted keys

kept in the database are bound to user authorization

and token validity.

This key management strategy ensures that

cryptographic materials are protected at both the

user and server levels, thereby minimizing the attack

surface while maintaining ease of use for lecturers

and students. By integrating per-file AES session

keys, controlled usage of RSA keys, and strict access

policies, EduCrypt establishes a secure, scalable,

and auditable key management framework suitable

for cloud-based educational environments.

The encryption and decryption process can be

described mathematically as follows:

The original file, denoted P, is encrypted using the

AES session key AES ks, yielding the ciphertext C

= AESks (P). The session key is then encrypted with

the recipient's RSA public key, yielding K’s =

RSAKpub (ks). During decryption, the session key is

recovered using the recipient's private key,

according to the formula Ks = RSA-1
Kpriv (k’s).

Finally, the original file is retrieved using P

= AES-1ks (C)[9].

This approach achieves a balance between speed and

security. AES provides fast encryption and

8 Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026

decryption, while RSA ensures secure key exchange,

both of which are essential in multi-user systems

such as cloud-based LMS. Additionally, SHA-256

offers an extra layer of protection by verifying data

integrity.

By combining these algorithms and mitigation

strategies, EduCrypt successfully balances high-

level cryptographic security with efficient system

performance, making it a flexible and reliable

solution for data security needs in cloud-based

digital education ecosystems.

Integration and Implementation

In this study, integration and implementation

represent two closely related yet conceptually

distinct aspects of the EduCrypt system. Integration

refers to how EduCrypt interacts with existing

Learning Management Systems (LMS), particularly

Moodle. On the other hand, implementation focuses

on how the system is technically constructed,

deployed, and executed at both the application and

infrastructure levels.

EduCrypt is seamlessly integrated with the Moodle

Learning Management System (LMS) via a flexible,

secure REST API. This integration enables

EduCrypt to operate both as a standalone encryption

platform and as a component within educational

institutions' existing digital learning ecosystems.

To accommodate users with varying levels of

technical expertise, two authentication mechanisms

have been developed. The first is Access Token

Integration, designed for administrators or

institutions that have full control over the LMS. This

method uses a personalized Moodle API token that

has limited access rights. The token facilitates data

requests to the Moodle REST API endpoint,

enabling synchronization of course data,

assignments, submissions, and private files. This

approach ensures a high level of security, as the

token is valid for a specific period and can be

revoked by the institution's administrator at any

time.

The second mechanism, Credential-based

Integration, serves non-technical users, such as

lecturers and students, who may not be familiar with

managing API tokens. This option allows

authentication using a campus username and

password. The EduCrypt system then generates a

temporary, limited-access token, ensuring data

security while maintaining ease of use. This dual

model makes EduCrypt accessible to various user

groups while balancing usability and data protection.

EduCrypt enforces strict separation of privileges

when interacting with Moodle services. It integrates

exclusively through officially supported REST API

endpoints for course listing, assignment metadata

retrieval, submission handling, and private file

access, without direct database access or core LMS

modifications. Each request from EduCrypt to

Moodle is authorized with scoped credentials that

provide only the minimum necessary permissions.

Access tokens, which are tied to user roles and

contextual identifiers such as course and user IDs,

ensure that users can access only resources relevant

to their roles, preventing privilege escalation. User

authentication and role validation are performed by

Moodle, after which EduCrypt issues a short-lived

internal token for encrypted file operations. Moodle

credentials are not stored persistently; tokens are

validated on each request before any operation is

performed. Invalid or expired tokens are promptly

rejected at the API gateway level.

By leveraging role-aware access control, scoped API

permissions, and short-lived tokens, EduCrypt

effectively adheres to the principle of least privilege,

minimizing the attack surface while maintaining

functionality between EduCrypt and Moodle in

educational settings.

On the implementation side, the system's backend is

built with Node.js for API management and Go

(Golang) for intensive processing tasks, such as

encryption, decryption, and file management. This

choice was made to maximize efficiency and speed,

as Golang is renowned for its high performance in

parallel and concurrent computing. At the same

time, Node.js excels at handling asynchronous

requests via RESTful APIs. The entire integration

process with Moodle is managed modularly,

including a RabbitMQ-based worker consumer that

automatically scans user context IDs and

synchronizes data between systems in real time.

The frontend implementation is developed using a

modern JavaScript framework that supports

dynamic, interactive displays. The user interface

includes a login page, a registration page, a

dashboard, a courses page, a private files page, and

a university integration page. EduCrypt implements

token-based authentication middleware to maintain

user session validity and prevent unauthorized

access, with tokens valid for 72 hours before

automatically expiring.

Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026 9

To complement the discussion on integration and

implementation, Figure 4-8 showcases sample user

interface layouts for EduCrypt. These interfaces

highlight the role-aware dashboard, secure file

management, and Moodle-integrated course views.

They demonstrate how access control policies and

authentication mechanisms are enforced at the user

interface level.

Figure 4. Login page

Figure 5. Dashboard page

Figure 6. Courses page

Figure 7. Integration page (Add Universtity)

Figure 8. UI for encrypted file access and cryptographic

performance validation.

EduCrypt was tested in a cloud environment using a

distributed server-based infrastructure. The testing

focused on measuring encryption and decryption

performance for academic files of varying sizes,

synchronization speeds between systems, and

resource utilization, including CPU and memory

usage. The implementation results demonstrated that

EduCrypt can efficiently encrypt and decrypt files

up to 30 MB in size, with an average memory usage

of approximately 214 MB and processing times that

fall within optimal limits for e-learning applications.

With its adaptive integration architecture and cloud-

based development approach, EduCrypt has

successfully established itself as a secure file-

sharing system that is not only cryptographically

secure but also easy for educational institutions to

adopt without disrupting their existing LMS

operations.

RESULTS AND DISCUSSIONS

The implementation of EduCrypt has created a fully

functional, secure file-sharing platform that

integrates seamlessly with the Moodle Learning

Management System (LMS) via RESTful APIs. This

integration is designed to maintain native user

workflows within Moodle while providing a

transparent security overlay that protects all file

uploads and downloads, ensuring that teaching and

learning processes remain uninterrupted.

Backend Implementation

From a system performance perspective, EduCrypt's

backend uses a combination of Node.js and Go

(Golang) to optimize encryption and decryption

performance, enabling efficient parallel

communication between services. The authentication

mechanism uses JSON Web Tokens (JWTs) with a

72-hour validity period, ensuring secure, session-

persistent access and reducing the frequency of user

reauthentication.

10 Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026

The integration with Moodle supports two

authentication methods: token-based authentication

for institutional administrators and credential-based

authentication (username and password) for general

users. This dual mechanism enhances accessibility,

especially for non-technical users who may not be

familiar with generating API tokens. EduCrypt also

automates the synchronization of course data,

assignments, submissions, and private files by

employing a RabbitMQ-based worker-consumer

model for asynchronous file-context scanning. This

approach significantly improves data

synchronization efficiency, achieving processing

speeds up to 3 times those of conventional sequential

synchronization methods.

At the core of EduCrypt's security layer is the Hybrid

Encryption Mechanism, which combines AES and

RSA algorithms for data protection and key

management, respectively. It employs base64

encoding for decryption to ensure compatibility and

secure file transfer. With this design, files remain

encrypted at all times, even after download, ensuring

end-to-end data confidentiality. Furthermore, all

system activities, including encryption, decryption,

and integration events, are logged by a centralized

systemd-based monitoring service, enabling real-

time auditing, fault tracing, and operational

transparency.

Frontend Implementation

The frontend interface of EduCrypt was developed

using a modern, responsive JavaScript framework

that integrates seamlessly with the backend API. The

user interface includes key pages such as Login,

Registration, Dashboard, Courses, and Private Files,

as well as a University Integration page for

onboarding new institutions.

Client-side authentication is managed through

secure middleware that stores tokens in local

storage, maintaining user sessions across page

reloads. Expired tokens automatically redirect users

to the login interface, enhancing session security.

The File Details dashboard provides administrators

with real-time system performance indicators,

including encryption and decryption times, CPU

utilization, and RAM consumption, supporting

transparent system monitoring and optimization.

Additionally, EduCrypt implements a server-side

decryption mechanism that streamlines the

download workflow: files are decrypted within the

server environment and delivered to clients in

base64-encoded format, ensuring that the original

data on the server remains encrypted. This design

effectively eliminates the risk of unauthorized

exposure of local files.

Performance Evaluation and Baseline

Comparison

The performance evaluation was conducted using a

series of benchmark tests across three file sizes: 1

MB, 10 MB, and 30 MB. The objective was to assess

the efficiency of the encryption and decryption

algorithms and to measure system resource

consumption, including memory (RAM) usage and

processor (CPU) load. All tests were conducted in a

cloud environment equipped with a multicore

processor and 4 GB of RAM. The encryption and

decryption processes were implemented using

OpenSSL-compatible cryptographic libraries. Each

benchmark scenario was executed 10 times to ensure

measurement consistency, and the reported results

represent the average execution times across all runs.

The observed performance variance remained within

acceptable bounds for system-level performance

evaluation, indicating stable and reproducible

benchmark outcomes, simulating realistic

operational conditions typical of an educational

institution using a Learning Management System

(LMS) [10],[11].

To further quantify the stability of results, standard

deviations were calculated for each benchmark

scenario. Across all file sizes, the standard deviation

of encryption and decryption times remained below

8% of the mean execution time, indicating low

dispersion between repeated runs. Additionally, a

95% confidence interval was computed, indicating

that the measured performance metrics fall within a

narrow range centered on the mean. These statistical

results demonstrate that the reported benchmark

values are reliable and not influenced by transient

system fluctuations, reinforcing the validity of the

performance evaluation.

The test results indicated that implementing the

AES-RSA-based Hybrid Encryption algorithm in

EduCrypt delivered efficient, stable performance,

even with large files. During the encryption phase, a

1 MB file was processed in 17-21 ms, with an

average memory usage of approximately 7 MB and

CPU usage fluctuating between 44 and 89%. For a

10 MB file, processing time ranged from 86 to 113

milliseconds, with RAM usage of approximately 83

MB and CPU usage between 47 and 71 percent. For

a 30 MB file, encryption times ranged from 221 to

280 milliseconds, with memory usage at 214 MB

and CPU usage ranging from 51 to 62 percent.

Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026 11

Decryption performance yielded comparable results

in terms of efficiency. A 1 MB file was decrypted in

10-37 milliseconds, using 7-15 MB of RAM. For a

10 MB file, decryption times ranged from 78 to 112

milliseconds, and for a 30 MB file, the decryption

process took between 228 and 276 milliseconds,

with relatively stable CPU usage of 45 to 62 percent,

as shown in Figure 4.

Analysis of the results reveals that the RSA

algorithm incurs minimal overhead, as it is used

solely to encrypt the AES key rather than the entire

file. This approach significantly reduces the

computational load while maintaining security [11]

[12]. The total encryption and decryption time for

large files remained under 300 milliseconds,

demonstrating the system's capability to manage

real-time digital education workloads effectively.

Furthermore, the measured memory and CPU

consumption, which scale with file size, indicate that

EduCrypt can function optimally on institutional

servers with mid-range specifications without

necessitating significant infrastructure upgrades.

While the previous benchmarks confirmed the

efficiency and stability of cryptographic operations

in isolation, a system-level performance comparison

was conducted to substantiate the reported up to

threefold performance improvement. This

evaluation focused on how architectural design

impacts end-to-end file synchronization, rather than

solely on cryptographic computations.

In this comparison, the proposed asynchronous

RabbitMQ-based worker architecture was evaluated

against a baseline sequential file synchronization

process under identical workload conditions. In the

baseline scenario, file synchronization tasks were

executed sequentially using a single worker.

Encryption, transmission, and storage operations

were performed in a blocking manner for each file

before moving on to the next task. This approach did

not use task parallelism or message queuing, relying

on a conventional synchronous file-handling

method.

In contrast, the proposed architecture utilized

RabbitMQ as a message broker to distribute file

synchronization tasks across multiple asynchronous

workers. Each worker performed encryption and

upload operations independently, enabling parallel

task execution while maintaining the same

cryptographic mechanisms and hardware

environment used in the baseline scenario.

The experimental configuration for both scenarios,

including file size range (1–30 MB), number of files

per batch, total data volume, baseline definition, and

evaluation metrics, is summarized in Table 1. Each

batch consisted of multiple files whose combined

size was approximately 300–500 MB, derived by

aggregating individual files within the defined size

range. Both scenarios were executed on the same

cloud infrastructure to ensure a fair comparison.

Performance was evaluated using total processing

time, defined as the elapsed time from the

submission of the first file synchronization request

until all files were successfully encrypted and stored,

and throughput, measured as the number of files

processed per second. Under these controlled

conditions, the asynchronous architecture

consistently achieved a reduction in total processing

time up to three times faster than the sequential

baseline. This improvement is attributed to reduced

idle waiting time and effective parallelization of

encryption and file transfer tasks, rather than

changes in cryptographic algorithms or system

resources.

To further evaluate EduCrypt's scalability, a

parallel-access scenario was simulated to assess the

system's behavior under multiple concurrent

encryption and decryption requests. The

asynchronous architecture of EduCrypt, built on

Node.js’s non-blocking I/O and RabbitMQ-based

worker consumers, enabled parallel task execution

without significant performance degradation

[13],[14]. Even during simultaneous multi-user

operations, the system maintained stable throughput,

with latency only 12% higher than single-user

benchmarks.

CPU usage was efficiently distributed across

threads, and memory utilization scaled linearly with

the number of concurrent tasks. This confirms that

EduCrypt’s design can effectively handle the high

concurrency typical of multi-user Learning

Management System (LMS) environments [12].

Table 1. Performance Evaluation Scenario and Baseline

Comparison

Aspect Baseline Scenario

(Sequential)

Proposed

Architecture

(Asynchronous)

Processing

Model

Sequential, single-

threaded

Asynchronous,

event-driven

12 Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026

Aspect Baseline Scenario

(Sequential)

Proposed

Architecture

(Asynchronous)

Task

Execution

Blocking (one file

processed at a time)

Parallel task

handling via

asynchronous

workers

Message

Broker

None RabbitMQ

File Size per

File

1–30 MB 1–30 MB

Number of

Files per

Batch

20 files 20 files

Total Data

Volume

~300–500 MB ~300–500 MB

Encryption

Mechanism

AES-256 + RSA-

2048 + SHA-256

AES-256 + RSA-

2048 + SHA-256

Execution

Environment

Identical cloud

infrastructure

(multicore CPU, 4

GB RAM)

Identical cloud

infrastructure

(multicore CPU, 4

GB RAM)

Evaluation

Metrics

Total processing

time; throughput

(files/sec)

Total processing

time; throughput

(files/sec)

Performance

Observation

Sequential

completion with

blocking execution

Up to 3× faster total

processing time

These findings indicate that EduCrypt not only

performs efficiently in single-session encryption and

decryption but also scales effectively under

concurrent workloads. This demonstrates its

readiness for deployment in real-world educational

institutions, where simultaneous file exchanges are

routine. Thus, it validates EduCrypt's performance-

aware and secure-by-design architecture.

Security Evaluation

The security evaluation of EduCrypt was conducted

through a series of controlled attack simulations to

assess the strength of its encryption mechanisms and

the resilience of its system architecture under

realistic threat assumptions (Figure 9).

Figure 9. File Encryption-Decryption Performance

The evaluation was based on a defined threat model

in which attackers are assumed to possess network-

level visibility and the ability to interact with

exposed application interfaces, but without direct

access to server-side private keys, internal memory,

or protected cryptographic materials. All

communications were secured using HTTPS/TLS,

and security testing focused on evaluating

confidentiality, integrity, and access control within

these constraints.

The evaluation focused on three major attack

categories: brute-force attacks on encryption keys,

SQL injection attacks on database queries, and man-

in-the-middle (MITM) interception of data in transit.

In the brute-force test, AES-256 was used as the

symmetric encryption standard [14]. The strength of

AES-256 derives from its 256-bit key space, which

contains approximately 2^256 possible keys. This

makes an exhaustive key search practically

impossible with current and foreseeable computing

capabilities. In EduCrypt, AES keys are generated

using cryptographically secure random functions,

ensuring they are never derived from user passwords

or short character-based secrets. As a result, the

resistance to brute-force attacks is assessed using the

AES-256 key space, rather than relying on

Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026 13

simplified assumptions about password length.

Additionally, RSA-2048 is used exclusively to

encrypt AES session keys, ensuring secure key

distribution even if the encrypted file data is

intercepted.

The second test focused on SQL injection

vulnerabilities within EduCrypt’s API endpoints.

All backend modules were built using parameterized

queries and strict input validation mechanisms [15].

Testing was conducted using automated penetration

tools, such as SQLMap, and custom injection

scripts; no successful injection attempts were

recorded across more than 500 test queries. The

success rate was therefore 0%, demonstrating that

EduCrypt’s backend data access layer effectively

mitigates common injection-based exploits through

its secure query architecture and ORM-based query

handling.

In the man-in-the-middle (MITM) simulation, Burp

Suite was used as a proxy to intercept and analyze

traffic between the EduCrypt client and server. All

intercepted traffic consisted solely of Base64-

encoded ciphertext transmitted over HTTPS [16],

with no identifiable plaintext or metadata leakage.

The AES-encrypted file data and RSA-encrypted

session keys were successfully preserved throughout

transmission, preventing decryption or inference by

external agents. This illustrates that EduCrypt’s

combination of hybrid encryption and transport-

layer security ensures end-to-end confidentiality and

integrity.

In addition to cryptographic and transport-layer

security, we evaluated application-level security

risks related to authentication token handling.

Storing authentication tokens in browser-accessible

storage, like local storage, can expose them to cross-

site scripting (XSS) attacks, which may steal session

credentials and weaken access control.

To mitigate this risk, EduCrypt employs a defense-

in-depth strategy. We enforce strict input validation

and output sanitization across user-facing

components to reduce XSS vulnerabilities. A

Content Security Policy (CSP) restricts script

execution to trusted origins, further reducing the risk

of attacks.

For stronger session isolation, EduCrypt uses HTTP-

only and Secure cookies to store tokens. The

httpOnly attribute prevents JavaScript access,

reducing the risk of token theft, while the Secure flag

ensures that tokens are transmitted only over

encrypted HTTPS. We also implement token

expiration and rotation to limit credential validity

and reduce the impact of any compromise.

By addressing client-side token storage risks and

implementing layered protections, including CSP

enforcement, sanitization, secure cookies, and token

lifecycle controls, EduCrypt strengthens its security

posture, ensuring confidentiality, integrity, and

access control throughout the authentication and

session management lifecycle.

Overall, the results confirm that EduCrypt provides

a strong defense against both standard and advanced

security threats. The layered encryption model (AES

+ RSA) and the secure API implementation create a

resilient framework that ensures data confidentiality,

authenticity, and integrity, even in simulated

adversarial conditions [17]. These findings reinforce

EduCrypt's effectiveness as a secure-by-design

solution for file sharing in cloud-based educational

ecosystems.

Discussions and Future Works

The results from the implementation and evaluation

of EduCrypt demonstrate that the proposed hybrid

encryption-based architecture achieves a well-

balanced combination of security, performance, and

system usability, particularly within Learning

Management System (LMS) environments.

Compared to previous studies on secure cloud file

sharing, EduCrypt offers several distinctive

advantages that address the limitations identified in

earlier research.

Prior hybrid encryption studies, such as those by

Durge and Deshmukh and Al-Bayati, primarily

focused on enhancing cryptographic strength in

general cloud storage scenarios. While these works

successfully improved security through AES-RSA

combinations, they did not evaluate real-time

integration with LMS platforms or assess the impact

of encryption on educational workflows. In contrast,

EduCrypt extends the hybrid encryption paradigm

by embedding it directly into Moodle-based LMS

operations, enabling encrypted file handling without

altering existing interactions between lecturers and

students. This integration-oriented approach

represents a significant advancement beyond purely

algorithmic evaluations.

From a performance perspective, EduCrypt's

benchmark results compare favorably with those of

similar encryption-based systems reported in the

literature. Studies that combine AES with

14 Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026

asymmetric schemes report encryption latencies

exceeding 500 ms for files larger than 20 MB,

especially when key management is not optimized

or when encryption is applied synchronously. In this

study, EduCrypt maintained encryption and

decryption times below 300 ms for files up to 30

MB, indicating that the selective use of RSA solely

for AES key encapsulation significantly reduces

computational overhead. This supports Singh and

Garg's findings on the efficiency of hybrid

encryption and further demonstrates its applicability

to real-time LMS environments.

In terms of scalability, most existing secure cloud

file-sharing solutions rely on sequential processing

or centralized encryption services, which can

become bottlenecks under concurrent access.

EduCrypt differentiates itself by adopting an

asynchronous, RabbitMQ-based worker architecture

that enables parallel file synchronization and

encryption tasks. The simulated multi-user access

scenario showed only a 12% increase in latency

compared to single-user benchmarks. This result

outperforms many LMS-integrated security

solutions reported in previous studies, where

performance degradation under concurrency is often

significant. This highlights EduCrypt’s suitability

for high-concurrency academic environments, such

as during assignment submission deadlines.

The security evaluation results further position

EduCrypt competitively within the state of the art.

Similar to previous hybrid encryption frameworks,

EduCrypt demonstrated strong resistance to brute-

force attacks due to the use of AES-256 and RSA-

2048. However, unlike several earlier works that

focused solely on cryptographic strength, this study

also evaluated application-layer security through

SQL injection testing and man-in-the-middle

(MITM) simulations. The absence of successful

SQL injection attempts and the interception of only

ciphertext during MITM testing confirms that

EduCrypt provides multi-layered security

protection, combining cryptographic robustness

with secure API and communication design.

Despite these strengths, EduCrypt inherits

limitations common to hybrid encryption systems.

Although asymmetric cryptographic operations are

minimized, they still introduce non-negligible

overhead in extremely high-load scenarios, such as

simultaneous large-file uploads by hundreds of

users. While the current architecture mitigates this

through asynchronous processing, further

optimization such as key-caching strategies or

hardware-assisted cryptography remains a potential

area for improvement. This limitation aligns with

observations in prior hybrid encryption studies that

note similar scalability challenges when asymmetric

operations are involved.

Future work will focus on addressing the limitations

of EduCrypt to transform it from a research

prototype into a production-ready platform. Planned

enhancements include implementing auto-scaling

worker orchestration using containerization

technologies such as Docker and Kubernetes,

thereby improving load balancing and resilience.

Additionally, future evaluations will extend beyond

the current single-cloud deployment to include

multi-cloud environments, such as AWS, Azure, and

Google Cloud, to assess fault tolerance and high

availability.

Further security improvements may include

adopting elliptic curve cryptography (ECC) for key

exchange, enabling optional client-side encryption,

and integrating blockchain-based audit trails for

immutable access logging.

In summary, EduCrypt advances the state of the art

by bridging the gap between cryptographic theory

and practical implementation of learning

management systems (LMSs). By combining

efficient hybrid encryption and asynchronous

techniques, it enhances both security and usability.

CONCLUSIONS

The development of EduCrypt, a secure file-sharing

platform for cloud-based e-learning environments,

effectively demonstrates the feasibility and benefits

of integrating Hybrid Encryption (AES-256 + RSA-

2048) to ensure data confidentiality, integrity, and

controlled access within digital education systems.

By combining AES for high-speed symmetric

encryption with RSA for secure key distribution,

EduCrypt strikes a balanced trade-off between

performance efficiency and cryptographic strength,

which is crucial for protecting academic data in

modern Learning Management System (LMS)

ecosystems.

Performance testing across file sizes (1 MB, 10 MB,

and 30 MB) shows that EduCrypt maintains

encryption-decryption latency under 300

milliseconds, even during concurrent user

operations. The system’s CPU and memory usage

remained within acceptable limits (below 62% CPU

Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026 15

and 214 MB RAM at peak load), confirming its

efficiency and scalability on mid-range institutional

servers. The use of RabbitMQ-based asynchronous

workers further enhances throughput during parallel

access, ensuring that the system can handle the

multi-user environments typical of cloud-based e-

learning without significant performance

degradation.

Security simulations, including brute-force, SQL

injection, and man-in-the-middle (MITM) attacks,

demonstrate that EduCrypt’s architecture effectively

resists common attack vectors. The complexity of

the AES keyspace makes brute-force attempts

computationally infeasible, while parameterized

queries and HTTPS-secured communication

channels ensure database integrity and prevent the

exposure of plaintext data.

From an implementation standpoint, the system’s

modular architecture, built with Node.js, Go, and a

JavaScript-based frontend, facilitates seamless

integration with the Moodle LMS via RESTful APIs.

This interoperability allows EduCrypt to function as

a plug-in or companion service, providing

transparent encryption and decryption processes

without disrupting existing LMS workflows.

In conclusion, EduCrypt meets its design objective

as a secure, performance-oriented platform tailored

for the education sector. It offers a practical

framework for protecting sensitive academic data

while ensuring usability and interoperability. Future

development will focus on expanding multi-cloud

scalability, integrating adaptive encryption policies,

and enhancing user analytics to solidify further

EduCrypt’s position as a trusted security layer for

digital learning environments.

ACKNOWLEDGMENTS

The authors would like to express their sincere

gratitude to the Lembaga Penelitian, Inovasi, dan

Pengabdian kepada Masyarakat (LPIPM) of

Universitas Al-Azhar Indonesia for providing

financial support through the Stimulus Research

Grant (SRG) scheme 2025 and institutional

facilitation that made this research possible.

REFERENCES

[1] G. Singh and M. Garg, “Enhanced cloud security

using hybrid mechanism of RSA, AES, and

Blowfish data encryption with secure OTP”

International Journal of Computers &
Technology, vol. 18, pp. 7364–7380, 2018, doi
10.24297/ijct.v18i0.7898

[2] C. Susmitha, S. Srineeharika, K. S. Laasya, S.

K. Kannaiah, and S. Bulla, “Hybrid

cryptography for secure file storage,” in Proc.

7th Int. Conf. on Computing Methodologies and

Communication (ICCMC), 2023, pp. 1151–

1156.

[3] R. S. Durge and V. M. Deshmukh, “Securing

cloud data: A hybrid encryption approach with

RSA and AES for enhanced security and

performance,” Journal of Integrated Science

and Technology, vol. 13, no. 3, pp. 1060–1068,

2025, doi

10.62110/sciencein.jist.2025.v13.1060.

[4] Y. M. A. Abualkas and D. L. Bhaskari, “Hybrid

Approach to Cloud Storage Security Using

ECC-AES Encryption and Key Management

Techniques,” International Journal of

Engineering Trends and Technology, vol. 72,

no. 4, pp. 92–100, Apr. 2024, doi

https://doi.org/10.24017/science.2025.1.5.

[5] A. S. Al-Bayati, Enhancing Performance of

Hybrid AES, RSA and Quantum Encryption

Algorithm. Ph.D. dissertation, Anglia Ruskin

Research Online (ARRO), 2023.

https://hdl.handle.net/10779/aru.23768127.
[6] R. A. Fathima and S. Arumugam, “A novel data

transmission model using hybrid encryption

scheme for preserving data integrity,” Advances

in Technology and Innovation, vol. 9, no. 2, p.

14114, 2024, doi

https://doi.org/10.46604/aiti.2024.14114.

[7] R. Saini and N. Sainis, “Cryptographic hybrid

model—An advancement in cloud computing

security: A survey,” International Journal of

Engineering Research and Technology, vol. 11,

no. 6, 2022, doi 10.17577/IJERTV11IS060145.

[8] R. S. Pressman, Software Engineering: A

Practitioner’s Approach. Palgrave Macmillan,

2005.

[9] R. L. Rivest, A. Shamir, and L. Adleman, “A

method for obtaining digital signatures and

public-key cryptosystems,” Communications

of the ACM, vol. 21, no. 2, pp. 120–126, 1978,

doi https://doi.org/10.1145/359340.359342.

[10] P. Shayan, R. Rondinelli, M. van Zaanen, and

M. Atzmueller, “Multi-level analysis of

learning management systems’ user acceptance

exemplified in two system case studies,” Data,

vol. 8, no. 3, p. 45, Feb. 2023. doi:

10.3390/data8030045.

[11] P. Chatterjee, R. Bose, S. Banerjee, and S. Roy,

“Enhancing data security of cloud-based

https://doi.org/10.24297/ijct.v18i0.7898
https://doi.org/10.62110/sciencein.jist.2025.v13.1060
https://doi.org/10.24017/science.2025.1.5
https://hdl.handle.net/10779/aru.23768127
https://doi.org/10.46604/aiti.2024.14114
https://doi.org/10.1145/359340.359342

16 Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, Vol. 11, No. 1, January 2026

LMS,” Wireless Personal Communications,

vol. 130, no. 2, pp. 1123–1139, 2023, doi

10.1007/s11277-023-10323-5.

[12] M. Anghel and G. C. Pereteanu, “Cyber security

approaches in e-learning,” in Proc.

INTED2020 Conf., 2020, pp. 4820–4825,

IATED.

[13] R. I. Akter, M. A. Khan, F. A. Rahman, S. J.

Soheli, and N. J. Suha, “RSA and AES-based

hybrid encryption technique for enhancing data

security in cloud computing,” International

Journal of Computational and Applied

Mathematics & Computer Science, vol. 3, pp.

60–71, Oct. 2023, doi

10.37394/232028.2023.3.8.

[14] P. Ghiya, TypeScript Microservices: Build,

deploy, and secure Microservices using

TypeScript combined with Node.js.

Birmingham, UK: Packt Publishing Ltd, 2018.

[15] S. Kumar and D. Kumar, “Securing of cloud

storage data using hybrid AES–ECC

cryptographic approach,” Journal of Mobile

Multimedia, vol. 19, no. 2, pp. 363–388, Mar.

2023, doi https://doi.org/10.13052/jmm1550-

4646.1921.

[16] S. S. Nair, “Securing against advanced cyber

threats: a comprehensive guide to phishing,

XSS, and SQL injection defense,” Journal of

Computer Science and Technology Studies,

vol. 6, no. 1, pp. 76–93, Jan. 2024. doi:

10.32996/jcsts.2024.6.1.9.

[17] E. AR, M. G., and D. T., “Enhancing security in

data exchange: mitigating risks solutions in

Base64 encoding and JSON Web Tokens,” in

Proc. 2024 Int. Symp. on Electronics and
Telecommunications (ISETC), Nov. 2024, pp. 1–

4.
[18] K. Hashizume, D. G. Rosado, E. Fernández-

Medina, and E. B. Fernández, “An analysis of

security issues for cloud computing,” Journal

of Internet Services and Applications, vol. 4,

pp. 1–13, Dec. 2013, doi 1186/1869-0238-4-5.

https://doi.org/10.1007/s11277-023-10323-5
https://doi.org/10.37394/232028.2023.3.8
https://doi.org/10.13052/jmm1550-4646.1921
https://doi.org/10.13052/jmm1550-4646.1921
https://doi.org/10.1186/1869-0238-4-5

