Prosiding Seminar Nasional Penelitian dan Pemberdayaan Masyarakat 2025
Jakarta, 12-13 November 2025

DOI http://dx.doi.org/10.36722/psn.v5i11.5053
[SNP — 43]

Design and Implementation of a Blockchain-based
Shipment Tracking Proof-of-Concept for Academic
Application
Andi Arniaty!”, Riri Safitri!, Winangsari Pradani', Nurbojatmiko' Abdullah!

Informatics Departement, Faculty of Science & Technology, Universitas Al-Azhar Indonesia,
J1. Sisingamangaraja, Kebayoran Baru, DKI Jakarta, 12110.

Penulis untuk Korespondensi/E-mail: andi.arniaty@uai.ac.id

Abstract — The demand for secure, transparent shipment tracking is rising as digital logistics advances.
Traditional centralized tracking systems face issues such as data delays and manipulation, which reduce
trust and accuracy. This research aims to create a blockchain-based shipment-tracking system that serves
as both a prototype and an educational tool for students. The system features a user interface built with
Vue.js and utilizes a middleware layer with Node.js and Express.js. A smart contract in Solidity is
deployed on a local Ethereum network using the Hardhat framework. This prototype allows students to
engage with decentralized application development and explore interactions among front-end
components, middleware, and smart contracts. Each transaction is recorded immutably, with an average
gas consumption of about 175,000 units and execution times under 2 seconds, while preventing duplicate
shipments. This research offers a functional shipment-tracking model that provides transparent data
recording and serves as an effective framework for blockchain education, bridging theoretical concepts
with practical applications in higher education.

Keywords — Academic Application, Blockchain, Shipment Tracking, Smart Contract, Solidity.

INTRODUCTION
In the logistics context, blockchain can document
he development of digital technology has every change in the status of a shipment with a
created a demand for a more transparent, transparent digital trail. This allows all parties
efficient, and real-time auditable logistics system. involved, senders, service providers, and recipients,
Conventional tracking systems that rely on to independently verify the shipment's status without
centralized databases still encounter several issues, needing to trust a single entity [3]. In addition to
such as delays in status updates, human errors in data enhancing transparency, implementing blockchain
entry, and the potential for information manipulation offers advantages in security and audit efficiency.
by internal parties [1]. Dependence on a single Using smart contracts, business processes such as
central server makes these systems vulnerable to the creation of shipping data, status updates, and
cyberattacks and data loss due to system failures, receipt verification can be automated based on the
resulting in a single point of failure. Blockchain logic programmed into the contract. This reduces the
technology presents a solution by offering a need for manual intervention and minimizes the risk
decentralized ledger approach, where all of data manipulation common in traditional systems
transactions are stored in interconnected blocks and [4].
verified by a distributed network. Each block is
secured using a cryptographic algorithm that ensures However, applying blockchain technology in
data integrity and immutability [2]. logistics requires complex infrastructure and can

134

http://dx.doi.org/10.36722/psn.v5i1.5053
mailto:andi.arniaty@uai.ac.id

incur high costs for large-scale implementation. This
scenario makes an academic prototype-based
approach particularly relevant for introducing
blockchain concepts to students through realistic,
secure, and scalable system simulations and
experimentation. In an academic setting, students
not only learn the theory of cryptography and
distributed ledger technology but also gain insights
into how smart contracts interact with user interfaces
and middleware in real-world applications [5].

Numerous studies highlight blockchain technology's
potential in logistics and supply chain systems,
enhancing transparency, security, and efficiency. A
notable example is TradeLens, developed by IBM
and Maersk [6], which digitizes international
shipping documents and connects supply chain
stakeholders. However, its closed-source nature
limits academic use.

Research by Casino [7] presents a blockchain-based
traceability model for the food supply chain to
ensure product authenticity and safety. Similarly, the
VeChain Foundation [8] combats counterfeiting in
pharmaceuticals and luxury goods using a QR-based
verification system. Most existing research focuses
on large-scale commercial contexts, often involving
complex infrastructure and high costs.

While some studies have examined blockchain in
education, they generally involve simple simulations
or conceptual frameworks without full technical
implementations. For instance, Delgado. VE et al.
[9] propose a smart contract simulation framework,
but lack user interface integration. Ullah N et.al.
[10] stress hands-on learning, but haven't created a
complete prototype.

In Indonesia, studies like those by Solihin [11] and
Safitri & Huda [12] explore blockchain in supply
chains. Still, they focus less on fully implementing
shipment tracking systems that merge frontend and
backend components with smart contracts. This
research addresses that gap by developing a
comprehensive blockchain-based shipment tracking
system.

These research identifies a significant gap: the
absence of replicable, full-stack blockchain
prototypes that can function as practical learning
tools while demonstrating actual transaction
behavior, system integration, and performance
metrics. To address this gap, the research develops a
blockchain-based shipment-tracking system that

135

uses Vue.js for the frontend, Node.js and Express.js
as middleware, and Solidity smart contracts
deployed with the Hardhat framework.

Hardhat is chosen for its flexibility as a local
Ethereum development environment, providing
detailed insights into transaction behavior, including
gas usage, block generation, and error tracing. It also
facilitates rapid testing without the complications of
deploying to a public network. Moreover, Hardhat
provides built-in debugging tools and a
customizable node, making smart contract testing
simpler and more efficient, and thus highly suitable
for academic prototyping and instructional purposes
[13].

The objective of this research is to design and
implement a comprehensive blockchain-based
shipment tracking system that integrates the
interface layer, middleware, and smart contracts.
Additionally, the research aims to validate the
system's functionality =~ within the Hardhat
development environment, evaluate its performance
using metrics such as gas usage, block number
tracing, and execution time, and assess its potential
as a project-based learning tool for students studying
blockchain application development.

RESEARCH METHOD

This study employs a prototype-based development
methodology commonly used in academic and
experimental software engineering research. The
aim is not only to create a functional system but also
to validate concepts and enhance hands-on learning.
This methodology focuses on incremental
development, iterative refinement, and evaluation
through functional testing and system tracing within
a blockchain environment. Such an approach is
particularly suitable for developing blockchain-
based applications, as it enables validating
transaction behavior, verifying smart contract
correctness, and assessing user interaction flows
before deploying the application in production
environments.

The methodology is structured into five key stages:
Requirement Analysis, System Design, Smart
Contract Development, Frontend and Backend
Integration, and Testing and Evaluation, as
illustrated in figure 1.

http://et.al/

Requirement Analysis:

~ldentifying problems with the old tracking system
~Define roles (Sender, Admin)
~Risk identification, data integrity, access and auditability

]

-~

(-

Design System:

~Design a 4-layer architecture (Frontend, Backend,

Smart Contract, Blockchain Layer)
~Define data flow, authorization, and smart contract
functions

|

Vs

Smart Contract Development:

~Write a Solidity contract
~Implement the createShipment and update functions
~Validate require() and role-based access
~Deploy to local Hardhat

~

l

Ve

Frontend and Backend Integration:

~

~Vue.js ir

ion with Node.j:

{o] .js mi e

(S

~Connect to the network
~Hardhat via Web3/Ethers
~JWT Auth implementation
~Display hash, block number, and status

\

l

S~

Testing_and Evaluation:

~Test createShipment
~Test updateShipmentStatus
~Test getShipment
~Note gas usage, block
~Number, execution time
~Test error: duplicate ID

!

Analysis & Result Interpretation:

~Gas efficiency evaluation
~Data integrity validation
~Usability evaluation
~System for education

Figure 1. Research Stage

Requirement Analysis

A thorough analysis of existing shipment tracking
workflows identified key issues with traditional
centralized logistics systems, such as data integrity
violations, uncontrolled access to information,
limited stakeholder traceability, and a lack of
verifiable audit trails. These systems often rely on
trust-based updates with minimal cryptographic
validation, leading to manipulation, delayed
reporting, and disputes.

To address these concerns, the new system is built
around two essential roles for verifiable shipment
tracking: (1) Sender: Initiates the shipment, entering
package details, including the receiver's identity and
item metadata. (2) Administrator (Admin): Also
responsible for entering shipment details.

Roles act as smart contract gatekeepers in Solidity
with the logic ‘require (msg.sender
roleAddress), ensuring that critical actions are
associated with authorized Ethereum addresses. By

136

initially excluding the courier as a distinct role, we
reduce the trust surface and architectural complexity,
allowing focused testing on essential aspects like
immutability and authorization. The courier role will
be added in future iterations, potentially
incorporating features such as GPS tracking and IoT
Sensors.

This streamlined model supports a controlled
environment for prototyping a decentralized
architecture while allowing for future role expansion
and logistics integration.

Design System

The architecture is composed of four modular and
dynamic layers: the Frontend Layer, Backend Layer,
Smart Contract Layer, and Blockchain Infrastructure
Layer. Each layer is essential for ensuring the
integrity, security, and auditability of the system.

The Frontend Layer effectively captures user inputs
and facilitates real-time interactions with shipment

data. Developed using Vue.,js, it incorporates
MetaMask integration for secure and decentralized
blockchain transaction signing, ensuring identity
verification.

The Backend Layer, built with Nodejs and
Express.js, manages user authentication through
JSON Web Tokens (JWTs), oversees business logic,
and communicates with the blockchain via Web3.js.
It also handles transaction logging and provides an
abstraction layer for seamless interaction with the
smart contract.

The Smart Contract Layer, implemented in Solidity,
encodes the fundamental business rules governing
shipment tracking, including creation, state updates,
and auditability. It enforces stringent access control
based on the wuser's role, either sender or
administrator, guaranteeing that all interactions are
validated through cryptographic methods.

@ >4
User i
MetaMask
Frontend Client-side transaction signing
AP calls Backend
Node.js wit
Express.js
Invocation via
Web3.js / Etherss.js

Deployment

=

Ganache

Smart Contract

Blockchain

interactions Blockchain

Network

Figure 2. Architecture System

Smart Contract Development

The smart contract development phase involved
deploying a smart contract to the local Ethereum
network using the Hardhat framework. In this study,

the contract was successfully deployed at the address
0x5FbDB2315678afecb367£032d93F642f6418

0aa3.

All transactions were executed using the primary

sender account,
0xf39Fd6e5laad88F6F4ce6aB8827279cffFb9

2266, which served as the system administrator.
Whenever a smart contract function such as
createShipment Or updateShipmentStatus
was executed, the network generated transaction
data, including the transaction hash, block number,

137

and gas used. This data serves as digital proof that
the transaction was successfully recorded on the
blockchain.

To ensure the reliability of business logic validation,
error handling tests were conducted by entering the
same shipment ID multiple times. The test results
showed that the system rejected duplicate
transactions and displayed the error message
"Shipment already exists." These findings
demonstrate that the internal verification mechanism
implemented via the "require () function in the
smart contract works as intended to prevent
duplicate data entry. Thus, the system successfully
upholds the integrity of shipment data and validates
the security logic implemented in the smart contract.

Frontend and Backend Integration

In addition to deploying and wvalidating the
fundamental functions of the smart contract, the
implementation phase involved establishing a
complete integration between the blockchain layer
(on-chain) and the web application layer (off-chain).
This integration was achieved through a middleware
service developed using Node.js and Express.js,
which acts as a secure communication bridge
between the Vue.js-based frontend and the smart
contract running on the local Hardhat Ethereum
network. The middleware is responsible for request
routing, data validation, and smart contract
interactions, utilizing Ethers.js or Web3.js. This
ensures that all blockchain transactions adhere to a
controlled and verifiable workflow.

To maintain strong access control, the middleware
incorporates a JSON Web Token (JWT)
authentication mechanism. Only authenticated
administrators are permitted to invoke sensitive
contract functions, such as ‘createShipment’ and
‘updateShipmentStatus’. This layered authorization
strategy ensures that, although the underlying ledger
is decentralized, permissions and role management
are consistently enforced at the application level.
This prevents unauthorized or malicious contract
calls while maintaining the system’s transparency.

The user interface is intentionally designed to be
accessible to mnon-technical users, featuring a
structured form for entering shipment data,
including recipient name, address, status, and
delivery time. When the user clicks the “Create
Shipment” button, the frontend sends an
authenticated API request to the backend
middleware. After validating the JWT and verifying
the user’s permissions, the backend forwards the

request to the appropriate smart contract function on
the blockchain. Once the transaction is mined and
confirmed, the blockchain returns cryptographic
metadata such as the transaction hash, block number,
and gas usage which is then displayed on the
interface as immutable digital proof of the shipment
record.

Overall, the implementation process demonstrates
the successful integration of all system components:
frontend, middleware, and blockchain layer into a
seamless end-to-end pipeline. This cohesive
architecture allows users to initiate, update, and
track shipment data with real-time transparency and
immutable audit trails. From an academic
perspective, this integration provides students with a
concrete and practical example of how blockchain-
based systems are engineered, helping them
understand smart contract interactions, transaction
flows, and security enforcement within a modern
full-stack application environment.

Testing and Evaluation

Testing was conducted to ensure the shipment
tracking system could accurately execute all smart
contract functions. Each function was tested
sequentially, including contract deployment,
shipment data creation (createShipment), shipment
status updates (updateShipmentStatus), and data
retrieval (getShipment). Important parameters such
as transaction hashes, block numbers, and gas
consumption were recorded, with results
summarized in Table 1.

Table 1. Transaction Test Results on Local Blockchain

. Transaction Gas

Function Hash Block # Used Status

Deploy 0x31378¢84... 1 960,843 Success

Contract

Create 0xd9302669... 2 175,066 Success

Shipment

Update

Shipment 0x55ee8d0b... 4 175,114 Success

Status

Get

Shipment 5 35,858 Read OK

Duplicate “Shipmen

Check 3 31,671 t already
exists”

The tests confirmed that each key function in the
smart contract was successfully executed and

recorded on the blockchain. The createShipment
transaction produced a unique transaction hash
(0xd9302669...) and resulted in a new block
being added with block number 2 and gas
consumption of 175,066 units. The
updateShipmentStatus ~ function demonstrated
similar efficiency with gas usage of 175,114 units.

In contrast, the getShipment function consumed
significantly less gas at 35,858 units since it is read-
only. The data duplication test returned the error
"Shipment already exists" in block number 3,
confirming the effectiveness of the contract's
validation mechanism.

Overall, the system meets essential criteria for a
good blockchain implementation: transaction
integrity and resource efficiency. The transaction log
provides valuable insights for students, illustrating
the impact of smart contract instructions on gas
consumption and block addition, serving as both
evidence of technical success and a learning tool in
blockchain education.

RESULTS & DISCUSSION

Transaction Performance Analysis

System testing was conducted on a local Hardhat
network (localhost:8545) using the default Ethereum
Virtual Machine (EVM) configuration. The results
showed that all smart contract functions executed
successfully, with five transactions recorded in
blocks 1 through 5, covering the deployment and
operation of the contract.

The first transaction (Block #1) involved contract
deployment, consuming 960,843 gas units. The
second transaction (Block #2) executed the
createShipment() function, using 175,066 gas units
and successfully recording new shipment data with
a transaction hash of 0xd9302669. Block #3
confirmed the duplicate validation mechanism,
generating an error message "Shipment already
exists," validating the correct operation of the
require() function.

The fourth transaction (Block #4) updated the
shipment status with 175,114 gas units, while the
fifth transaction (Block #5) executed the
getShipment() function, consuming only 35,858 gas
units due to its read-only nature. The average
transaction time was under 2 seconds.

Table 2. Blockchain System Transaction Performance on Hardhat Local Network

Average
Contract Operatio Gas Execution s
No Function n Type Used Time Status Description
(seconds)
Contract
i Deploy Write 960,843 2.10 Success mitializati-
Contract on
Successful
. . Shipment
2 createShipment Write 175,066 1.84 Success .
data input
. Status
3 updateShip- Write 175,114 1.87 Success update
mentStatus
successful
Data read
. Read
4 getShipment Read 35,858 0.64 from
OK .
blockchain
. “Shipment
s Duplicate Write 31,671 1.92 Failed already
Check P
exists

These results indicate that the Solidity contract is
efficient and free from unnecessary complexity. The
stability of gas usage for write functions and
efficiency for read functions confirm the
implementation standards for academic prototypes.
Additionally, the error-handling test in Block #3
demonstrated robust business logic integrity.

A simulation with 10 parallel createShipment
transactions suggested linear scalability, estimating
total gas consumption at around 1.75 million units
without significant cost spikes. While this has not
been empirically tested on a public testnet, it lays the
groundwork for further research on contract
performance in environments like the Goerli Testnet
or Polygon Mumbai, and for exploring gas
optimization.

As shown in Table 2, the average gas consumption
for write transactions is approximately 175,000
units, with execution times under 2 seconds. The
consistent gas usage indicates that the Solidity code's
structure is optimal, with no redundant instructions
leading to unnecessary execution. In contrast, read
operations consume significantly less gas since they
do not alter the blockchain state.

Furthermore, the intentionally failed duplicate check
test confirms that the contract validation mechanism
(the ‘require()’ function) operates as intended,
effectively preventing duplicate entries. This
demonstrates the security of the business logic in
place.

139

In summary, this analysis highlights the effective
implementation of a blockchain-based delivery
tracking system, showing its potential as a real-
world academic model for teaching blockchain
efficiency, security, and scalability.

Comparison with Non-Blockchain Systems

To evaluate the effectiveness of the blockchain
approach, we conducted a conceptual comparison
with a centralized database-based tracking system.
Conventional systems tend to allow for faster read
and write transactions, averaging less than one
second, because they do not require network
verification [14]. However, they have significant
drawbacks in terms of data integrity and audit
transparency. In traditional systems, administrators
with high access rights can modify or delete
shipment data, creating opportunities to manipulate
product statuses [2].

In contrast, the proposed blockchain-based system
guarantees that every successfully recorded
transaction is immutable, meaning it cannot be
changed or deleted once confirmed on the ledger.
The duplication error test, which returned the
message "Shipment already exists," demonstrated
that the smart contract effectively executed the
integrity validation mechanism automatically,
without needing third-party intervention. Although
the blockchain system may be slightly slower than a
traditional database, it provides significantly greater
data reliability, auditability, and security features

that are critical for an effective shipment tracking
system [15].

Security Analysis and Limitations

This system is designed with a three-layer security
principle including, On-chain security: Business
logic validation is performed directly by the smart
contract using the ‘require()’ function. This helps
prevent duplication and unauthorized transactions.
Off-chain security: JWT (JSON Web Token)
authentication is employed to ensure that only
verified users can access administrative functions,
providing write access only to authorized personnel.
Transport security: The HTTPS protocol is used to
encrypt communications between the user interface
and the middleware server, ensuring data integrity
during transmission.

However, several security limitations have been
identified. Personal data, such as recipient names
and addresses, is stored in plain text within the
contract, making it less suitable for public
implementation. ~To address this, future
developments could utilize an off-chain data storage
approach, where sensitive information is stored in an
encrypted database while the blockchain retains only
hash references.

Additionally, this system currently operates on a
local Hardhat network. As such, it has not yet tested
fully decentralized security aspects, such as
Byzantine fault tolerance or defenses against Sybil
attacks, which are commonly seen on public
networks.

Pedagogical Analysis

This system marks a significant advancement in
Project-Based Learning (PBL) by featuring a three-
layer architecture: frontend, backend, and
blockchain allowing students to gain exposure to
full-stack decentralized application (dApp)
development [16],[17]. Students engage in the full
blockchain development cycle, including designing
and coding smart contracts in Solidity,
implementing middleware for APl communication
using Node.js and Ethers.js, and integrating the user
interface with Vue.js to display transaction results.
This aligns with recent studies emphasizing the
importance of hands-on blockchain development in
higher education to bridge the gap between theory
and real-world implementation [18].

In lab sessions, students learn to interpret technical
data such as transaction hashes and gas
consumption, understanding the link between

140

contract complexity and execution costs on a
blockchain network. Previous studies indicate that
exposing learners to blockchain metrics and
transaction behaviors improves their understanding
of distributed consensus, computational cost models,
and decentralized application logic [19].

This approach aligns with current trends in
informatics education, emphasizing experiential
learning in distributed technologies. Educators can
design practical assignments, such as analyzing gas
efficiency in contract functions, modifying contracts
with additional validation, comparing performance
between local networks and public testnets, and
analyzing security implications [20].

Overall, this research showcases a technical
implementation alongside an inspiring educational
model for applied blockchain learning. It paves the
way for integration into courses on Blockchain
Technology, Software Engineering, Distributed
Systems, and other informatics programs eager to
embrace decentralized application development in
their curricula.

CONCLUSION

This research successfully designed and
implemented a blockchain-based shipment tracking
system using smart contracts on a local Ethereum
network (Hardhat Network). Test results indicate
that the system's main functions: createShipment,
updateShipmentStatus, and getShipment, operate
efficiently and reliably, with an average gas
consumption of 175,000 units and an execution time
of under two seconds per transaction.

The sequence of blocks from Block #1 to Block #5
confirms that all transactions have been validated
and permanently recorded in the blockchain,
creating an immutable ledger, with no detected
execution errors or logical anomalies.

In terms of functionality, this system illustrates how
blockchain technology can enhance transparency,
security, and data reliability in the shipment tracking
process. The contract validation mechanism, which
prevents duplicate entries, demonstrates that the
business logic functions as intended and safeguards
against data manipulation.

Furthermore, the test results show that the smart
contract design has a stable and efficient code
structure, making it a tangible example of applying
gas optimization principles in an academic context.

The primary contribution of this research lies in the
application of a blockchain system as a practical
learning model (academic prototype) that connects
cryptographic theory, distributed programming, and
smart contract-based application development. This
system can be utilized as an educational tool in
informatics laboratories to introduce concepts such
as decentralization, data integrity, and contract
efficiency.

Future developments could focus on testing the
system on public networks like the Goerli Testnet or
Polygon, as well as integrating it with IoT
technology to automatically record physical tracking
data. Additionally, further research could investigate
off-chain encryption models to protect sensitive data
and analyze system performance under high
transaction loads.

In summary, the developed system serves not only
as a proof-of-concept for blockchain implementation
in logistics but also as an adaptive learning platform
for students to understand modern distributed
technologies and the challenges of their real-world
applications.

REFERENCES

[1] Nakamoto S. Bitcoin: A peer-to-peer electronic
cash system. Available at SSRN 3440802. 2008
Aug 21.
http://dx.doi.org/10.2139/ssrn.3440802

[2] Kshetri N. 1 Blockchain’s roles in meeting key
supply chain management objectives.
International ~ Journal of information

management. 2018 Apr 1;39:80-9.
https://doi.org/10.1016/j.ijinfomgt.2017.12.00
[3] Algarni MA, Alkatheiri MS, Chauhdary SH,
Saleem S. Use of blockchain-based smart
contracts in logistics and supply chains.
Electronics. 2023 Mar 11;12(6):1340.
https://doi.org/10.3390/electronics12061340
[4] Geimer H, Vermeire P, van Ostaeyen L, Kapasi
H. Blockchain in Logistics. Article. June. 2020.
https://www.pwc.de/en/transport-und-
logistik/blockchain-in-logistics.pdf?utm
Mohammad A, Vargas S. Challenges of using
blockchain in the education sector: A literature
review. Applied Sciences. 2022 Jun
23;12(13):6380.

[5]

141

IBM & Maersk. TradeLens Platform Overview.
2019.
https://dgtr.de/wp-content/uploads/TradeLens-
Blockchain.pdf
Casino F, Kanakaris V, Dasaklis TK,
Moschuris S, Stachtiaris S, Pagoni M,
Rachaniotis NP. Blockchain-based food supply
chain traceability: a case study in the dairy
sector. International journal of production
research. 2021 Oct 2;59(19):5758-70.
https://doi.org/10.1080/00207543.2020.17892
38
VeChain Foundation. Web3 for
Sustainable Blockchain Solutions
(Whitepaper). 2023.
https://www.vechain.org/assets/whitepaper/
whitepaper-3-0.pdf?utm
Delgado-von-Eitzen C, Anido-Rifén L,
Fernandez-Iglesias MJ. Blockchain
applications in education: A systematic
literature review. Applied Sciences. 2021 Dec
12;11(24):11811.
https://doi.org/10.3390/app112411811
[10] Ullah N, Mugahed Al-Rahmi W, Alzahrani Al,

Better:

Alfarraj O, Alblehai FM. Blockchain
technology adoption in smart learning
environments. Sustainability. 2021 Feb

7;13(4):1801.
https://doi.org/10.3390/su13041801

[11] Solihin MA, Nur D, Tungadi E, Yusri IK.
Logistic supply chain management system
modeling using blockchain. Jurnal Teknologi
Elekterika. 2024 Nov 15;21(2):142-9.
https://doi.org/10.31963/elekterika.v21i2.5110

[12] Safitri W, Huda M. Adoption of Blockchain
Technology in Indonesian MSME Supply
Chain Management (SCM). Jurnal Ekonika vol.
2023;8:2.

[13] Naik PG, Naik GR. Every Stuff You Need for
Development of Decentralized App Using
Blockchain Technology:(Covers Hardhat,
React. js and Ethers. js). Shashwat Publication;
2023 Nov 20.

[14] Zheng Z, Xie S, Dai H, Chen X, Wang H. An
overview of blockchain technology:
Architecture, consensus, and future trends.
In2017 IEEE international congress on big data
(BigData congress) 2017 Jun 25 (pp. 557-564).
Ieee.

[15] Crosby M, Pattanayak P, Verma S,
Kalyanaraman V. Blockchain technology:
Beyond bitcoin. Applied innovation. 2016
Jun;2(6-10):71.

https://doi.org/10.1016/j.ijinfomgt.2017.12.005
https://doi.org/10.3390/electronics12061340
https://www.pwc.de/en/transport-und-logistik/blockchain-in-logistics.pdf?utm
https://www.pwc.de/en/transport-und-logistik/blockchain-in-logistics.pdf?utm
https://dgtr.de/wp-content/uploads/TradeLens-Blockchain.pdf
https://dgtr.de/wp-content/uploads/TradeLens-Blockchain.pdf
https://doi.org/10.1080/00207543.2020.1789238
https://doi.org/10.1080/00207543.2020.1789238
https://doi.org/10.3390/app112411811
https://doi.org/10.3390/su13041801
https://doi.org/10.31963/elekterika.v21i2.5110

[16] Saberi S, Kouhizadeh M, Sarkis J, Shen L.
Blockchain technology and its relationships to
sustainable supply chain management.
International journal of production research.
2019 Apr 3;57(7):2117-35.
https://doi.org/10.1080/00207543.2018.1533261

[17] Thomas JW. A review of research on project-
based learning.2000.

[18] Prince MJ, Felder RM. Inductive teaching and
learning methods: Definitions, comparisons,

142

and research bases. Journal of engineering
education. 2006 Apr;95(2):123-38.
https://doi.org/10.1002/j.2168-
9830.2006.tb00884.x

[19] Hapuarachchi T, Mapkar M, Rahouti M, Xiong
K. Advancing Blockchain Learning in STEM
Education Through A Comprehensive Hands-
On Educational Approach. In 2024 IEEE
Integrated STEM Education Conference
(ISEC) 2024 Mar 9 (pp. 1-6). IEEE.

[20] Steiu MF. Blockchain in education:
Opportunities, applications, and challenges.
First Monday. 2020 Aug 24.

https://doi.org/10.1080/00207543.2018.1533261
https://doi.org/10.1002/j.2168-9830.2006.tb00884.x
https://doi.org/10.1002/j.2168-9830.2006.tb00884.x

