
Prosiding Seminar Nasional Penelitian dan Pemberdayaan Masyarakat 2025

Jakarta, 12-13 November 2025

134

DOI http://dx.doi.org/10.36722/psn.v5i1.5053

[SNP – 43]

Design and Implementation of a Blockchain-based

Shipment Tracking Proof-of-Concept for Academic

Application

Andi Arniaty1*, Riri Safitri1, Winangsari Pradani1, Nurbojatmiko1 Abdullah1

1Informatics Departement, Faculty of Science & Technology, Universitas Al-Azhar Indonesia,

Jl. Sisingamangaraja, Kebayoran Baru, DKI Jakarta, 12110.

Penulis untuk Korespondensi/E-mail: andi.arniaty@uai.ac.id

Abstract – The demand for secure, transparent shipment tracking is rising as digital logistics advances.

Traditional centralized tracking systems face issues such as data delays and manipulation, which reduce

trust and accuracy. This research aims to create a blockchain-based shipment-tracking system that serves

as both a prototype and an educational tool for students. The system features a user interface built with

Vue.js and utilizes a middleware layer with Node.js and Express.js. A smart contract in Solidity is

deployed on a local Ethereum network using the Hardhat framework. This prototype allows students to

engage with decentralized application development and explore interactions among front-end

components, middleware, and smart contracts. Each transaction is recorded immutably, with an average

gas consumption of about 175,000 units and execution times under 2 seconds, while preventing duplicate

shipments. This research offers a functional shipment-tracking model that provides transparent data

recording and serves as an effective framework for blockchain education, bridging theoretical concepts

with practical applications in higher education.

Keywords – Academic Application, Blockchain, Shipment Tracking, Smart Contract, Solidity.

INTRODUCTION

he development of digital technology has

created a demand for a more transparent,

efficient, and real-time auditable logistics system.

Conventional tracking systems that rely on

centralized databases still encounter several issues,

such as delays in status updates, human errors in data

entry, and the potential for information manipulation

by internal parties [1]. Dependence on a single

central server makes these systems vulnerable to

cyberattacks and data loss due to system failures,

resulting in a single point of failure. Blockchain

technology presents a solution by offering a

decentralized ledger approach, where all

transactions are stored in interconnected blocks and

verified by a distributed network. Each block is

secured using a cryptographic algorithm that ensures

data integrity and immutability [2].

In the logistics context, blockchain can document

every change in the status of a shipment with a

transparent digital trail. This allows all parties

involved, senders, service providers, and recipients,

to independently verify the shipment's status without

needing to trust a single entity [3]. In addition to

enhancing transparency, implementing blockchain

offers advantages in security and audit efficiency.

Using smart contracts, business processes such as

the creation of shipping data, status updates, and

receipt verification can be automated based on the

logic programmed into the contract. This reduces the

need for manual intervention and minimizes the risk

of data manipulation common in traditional systems

[4].

However, applying blockchain technology in

logistics requires complex infrastructure and can

T

http://dx.doi.org/10.36722/psn.v5i1.5053
mailto:andi.arniaty@uai.ac.id

135

incur high costs for large-scale implementation. This

scenario makes an academic prototype-based

approach particularly relevant for introducing

blockchain concepts to students through realistic,

secure, and scalable system simulations and

experimentation. In an academic setting, students

not only learn the theory of cryptography and

distributed ledger technology but also gain insights

into how smart contracts interact with user interfaces

and middleware in real-world applications [5].

Numerous studies highlight blockchain technology's

potential in logistics and supply chain systems,

enhancing transparency, security, and efficiency. A

notable example is TradeLens, developed by IBM

and Maersk [6], which digitizes international

shipping documents and connects supply chain

stakeholders. However, its closed-source nature

limits academic use.

Research by Casino [7] presents a blockchain-based

traceability model for the food supply chain to

ensure product authenticity and safety. Similarly, the

VeChain Foundation [8] combats counterfeiting in

pharmaceuticals and luxury goods using a QR-based

verification system. Most existing research focuses

on large-scale commercial contexts, often involving

complex infrastructure and high costs.

While some studies have examined blockchain in

education, they generally involve simple simulations

or conceptual frameworks without full technical

implementations. For instance, Delgado. VE et al.

[9] propose a smart contract simulation framework,

but lack user interface integration. Ullah N et.al.

[10] stress hands-on learning, but haven't created a

complete prototype.

In Indonesia, studies like those by Solihin [11] and

Safitri & Huda [12] explore blockchain in supply

chains. Still, they focus less on fully implementing

shipment tracking systems that merge frontend and

backend components with smart contracts. This

research addresses that gap by developing a

comprehensive blockchain-based shipment tracking

system.

These research identifies a significant gap: the

absence of replicable, full-stack blockchain

prototypes that can function as practical learning

tools while demonstrating actual transaction

behavior, system integration, and performance

metrics. To address this gap, the research develops a

blockchain-based shipment-tracking system that

uses Vue.js for the frontend, Node.js and Express.js

as middleware, and Solidity smart contracts

deployed with the Hardhat framework.

Hardhat is chosen for its flexibility as a local

Ethereum development environment, providing

detailed insights into transaction behavior, including

gas usage, block generation, and error tracing. It also

facilitates rapid testing without the complications of

deploying to a public network. Moreover, Hardhat

provides built-in debugging tools and a

customizable node, making smart contract testing

simpler and more efficient, and thus highly suitable

for academic prototyping and instructional purposes

[13].

The objective of this research is to design and

implement a comprehensive blockchain-based

shipment tracking system that integrates the

interface layer, middleware, and smart contracts.

Additionally, the research aims to validate the

system's functionality within the Hardhat

development environment, evaluate its performance

using metrics such as gas usage, block number

tracing, and execution time, and assess its potential

as a project-based learning tool for students studying

blockchain application development.

RESEARCH METHOD

This study employs a prototype-based development

methodology commonly used in academic and

experimental software engineering research. The

aim is not only to create a functional system but also

to validate concepts and enhance hands-on learning.

This methodology focuses on incremental

development, iterative refinement, and evaluation

through functional testing and system tracing within

a blockchain environment. Such an approach is

particularly suitable for developing blockchain-

based applications, as it enables validating

transaction behavior, verifying smart contract

correctness, and assessing user interaction flows

before deploying the application in production

environments.

The methodology is structured into five key stages:

Requirement Analysis, System Design, Smart

Contract Development, Frontend and Backend

Integration, and Testing and Evaluation, as

illustrated in figure 1.

http://et.al/

136

Figure 1. Research Stage

Requirement Analysis

A thorough analysis of existing shipment tracking

workflows identified key issues with traditional

centralized logistics systems, such as data integrity

violations, uncontrolled access to information,

limited stakeholder traceability, and a lack of

verifiable audit trails. These systems often rely on

trust-based updates with minimal cryptographic

validation, leading to manipulation, delayed

reporting, and disputes.

To address these concerns, the new system is built

around two essential roles for verifiable shipment

tracking: (1) Sender: Initiates the shipment, entering

package details, including the receiver's identity and

item metadata. (2) Administrator (Admin): Also

responsible for entering shipment details.

Roles act as smart contract gatekeepers in Solidity

with the logic `require (msg.sender ==

roleAddress), ensuring that critical actions are

associated with authorized Ethereum addresses. By

initially excluding the courier as a distinct role, we

reduce the trust surface and architectural complexity,

allowing focused testing on essential aspects like

immutability and authorization. The courier role will

be added in future iterations, potentially

incorporating features such as GPS tracking and IoT

sensors.

This streamlined model supports a controlled

environment for prototyping a decentralized

architecture while allowing for future role expansion

and logistics integration.

Design System

The architecture is composed of four modular and

dynamic layers: the Frontend Layer, Backend Layer,

Smart Contract Layer, and Blockchain Infrastructure

Layer. Each layer is essential for ensuring the

integrity, security, and auditability of the system.

The Frontend Layer effectively captures user inputs

and facilitates real-time interactions with shipment

137

data. Developed using Vue.js, it incorporates

MetaMask integration for secure and decentralized

blockchain transaction signing, ensuring identity

verification.

The Backend Layer, built with Node.js and

Express.js, manages user authentication through

JSON Web Tokens (JWTs), oversees business logic,

and communicates with the blockchain via Web3.js.

It also handles transaction logging and provides an

abstraction layer for seamless interaction with the

smart contract.

The Smart Contract Layer, implemented in Solidity,

encodes the fundamental business rules governing

shipment tracking, including creation, state updates,

and auditability. It enforces stringent access control

based on the user's role, either sender or

administrator, guaranteeing that all interactions are

validated through cryptographic methods.

Figure 2. Architecture System

Smart Contract Development

The smart contract development phase involved

deploying a smart contract to the local Ethereum

network using the Hardhat framework. In this study,

the contract was successfully deployed at the address
0x5FbDB2315678afecb367f032d93F642f6418

0aa3.

All transactions were executed using the primary

sender account,
0xf39Fd6e51aad88F6F4ce6aB8827279cffFb9

2266,which served as the system administrator.

Whenever a smart contract function such as

createShipment or updateShipmentStatus

was executed, the network generated transaction

data, including the transaction hash, block number,

and gas used. This data serves as digital proof that

the transaction was successfully recorded on the

blockchain.

To ensure the reliability of business logic validation,

error handling tests were conducted by entering the

same shipment ID multiple times. The test results

showed that the system rejected duplicate

transactions and displayed the error message

"Shipment already exists." These findings

demonstrate that the internal verification mechanism

implemented via the `require()` function in the

smart contract works as intended to prevent

duplicate data entry. Thus, the system successfully

upholds the integrity of shipment data and validates

the security logic implemented in the smart contract.

Frontend and Backend Integration

In addition to deploying and validating the

fundamental functions of the smart contract, the

implementation phase involved establishing a

complete integration between the blockchain layer

(on-chain) and the web application layer (off-chain).

This integration was achieved through a middleware

service developed using Node.js and Express.js,

which acts as a secure communication bridge

between the Vue.js-based frontend and the smart

contract running on the local Hardhat Ethereum

network. The middleware is responsible for request

routing, data validation, and smart contract

interactions, utilizing Ethers.js or Web3.js. This

ensures that all blockchain transactions adhere to a

controlled and verifiable workflow.

To maintain strong access control, the middleware

incorporates a JSON Web Token (JWT)

authentication mechanism. Only authenticated

administrators are permitted to invoke sensitive

contract functions, such as `createShipment` and

`updateShipmentStatus`. This layered authorization

strategy ensures that, although the underlying ledger

is decentralized, permissions and role management

are consistently enforced at the application level.

This prevents unauthorized or malicious contract

calls while maintaining the system’s transparency.

The user interface is intentionally designed to be

accessible to non-technical users, featuring a

structured form for entering shipment data,

including recipient name, address, status, and

delivery time. When the user clicks the “Create

Shipment” button, the frontend sends an

authenticated API request to the backend

middleware. After validating the JWT and verifying

the user’s permissions, the backend forwards the

138

request to the appropriate smart contract function on

the blockchain. Once the transaction is mined and

confirmed, the blockchain returns cryptographic

metadata such as the transaction hash, block number,

and gas usage which is then displayed on the

interface as immutable digital proof of the shipment

record.

Overall, the implementation process demonstrates

the successful integration of all system components:

frontend, middleware, and blockchain layer into a

seamless end-to-end pipeline. This cohesive

architecture allows users to initiate, update, and

track shipment data with real-time transparency and

immutable audit trails. From an academic

perspective, this integration provides students with a

concrete and practical example of how blockchain-

based systems are engineered, helping them

understand smart contract interactions, transaction

flows, and security enforcement within a modern

full-stack application environment.

Testing and Evaluation

Testing was conducted to ensure the shipment

tracking system could accurately execute all smart

contract functions. Each function was tested

sequentially, including contract deployment,

shipment data creation (createShipment), shipment

status updates (updateShipmentStatus), and data

retrieval (getShipment). Important parameters such

as transaction hashes, block numbers, and gas

consumption were recorded, with results

summarized in Table 1.

Table 1. Transaction Test Results on Local Blockchain

Function
Transaction

Hash
Block #

Gas

Used
Status

Deploy

Contract
0x31378c84… 1 960,843 Success

Create

Shipment
0xd9302669… 2 175,066 Success

Update

Shipment

Status

0x55ee8d0b… 4 175,114 Success

Get

Shipment
– 5 35,858 Read OK

Duplicate

Check
– 3 31,671

“Shipmen

t already

exists”

The tests confirmed that each key function in the

smart contract was successfully executed and

recorded on the blockchain. The createShipment

transaction produced a unique transaction hash

(0xd9302669…) and resulted in a new block

being added with block number 2 and gas

consumption of 175,066 units. The

updateShipmentStatus function demonstrated

similar efficiency with gas usage of 175,114 units.

In contrast, the getShipment function consumed

significantly less gas at 35,858 units since it is read-

only. The data duplication test returned the error

"Shipment already exists" in block number 3,

confirming the effectiveness of the contract's

validation mechanism.

Overall, the system meets essential criteria for a

good blockchain implementation: transaction

integrity and resource efficiency. The transaction log

provides valuable insights for students, illustrating

the impact of smart contract instructions on gas

consumption and block addition, serving as both

evidence of technical success and a learning tool in

blockchain education.

RESULTS & DISCUSSION

Transaction Performance Analysis

System testing was conducted on a local Hardhat

network (localhost:8545) using the default Ethereum

Virtual Machine (EVM) configuration. The results

showed that all smart contract functions executed

successfully, with five transactions recorded in

blocks 1 through 5, covering the deployment and

operation of the contract.

The first transaction (Block #1) involved contract

deployment, consuming 960,843 gas units. The

second transaction (Block #2) executed the

createShipment() function, using 175,066 gas units

and successfully recording new shipment data with

a transaction hash of 0xd9302669. Block #3

confirmed the duplicate validation mechanism,

generating an error message "Shipment already

exists," validating the correct operation of the

require() function.

The fourth transaction (Block #4) updated the

shipment status with 175,114 gas units, while the

fifth transaction (Block #5) executed the

getShipment() function, consuming only 35,858 gas

units due to its read-only nature. The average

transaction time was under 2 seconds.

139

Table 2. Blockchain System Transaction Performance on Hardhat Local Network

No
Contract

Function

Operatio

n Type

Gas

Used

Average

Execution

Time

(seconds)

Status Description

1
Deploy

Contract
Write 960,843 2.10 Success

Contract

Initializati-

on

Successful

2 createShipment Write 175,066 1.84 Success
Shipment

data input

3
updateShip-

mentStatus
Write 175,114 1.87 Success

Status

update

successful

4 getShipment Read 35,858 0.64
Read

OK

Data read

from

blockchain

5
Duplicate

Check
Write 31,671 1.92 Failed

“Shipment

already

exists”

These results indicate that the Solidity contract is

efficient and free from unnecessary complexity. The

stability of gas usage for write functions and

efficiency for read functions confirm the

implementation standards for academic prototypes.

Additionally, the error-handling test in Block #3

demonstrated robust business logic integrity.

A simulation with 10 parallel createShipment

transactions suggested linear scalability, estimating

total gas consumption at around 1.75 million units

without significant cost spikes. While this has not

been empirically tested on a public testnet, it lays the

groundwork for further research on contract

performance in environments like the Goerli Testnet

or Polygon Mumbai, and for exploring gas

optimization.

As shown in Table 2, the average gas consumption

for write transactions is approximately 175,000

units, with execution times under 2 seconds. The

consistent gas usage indicates that the Solidity code's

structure is optimal, with no redundant instructions

leading to unnecessary execution. In contrast, read

operations consume significantly less gas since they

do not alter the blockchain state.

Furthermore, the intentionally failed duplicate check

test confirms that the contract validation mechanism

(the `require()` function) operates as intended,

effectively preventing duplicate entries. This

demonstrates the security of the business logic in

place.

In summary, this analysis highlights the effective

implementation of a blockchain-based delivery

tracking system, showing its potential as a real-

world academic model for teaching blockchain

efficiency, security, and scalability.

Comparison with Non-Blockchain Systems

To evaluate the effectiveness of the blockchain

approach, we conducted a conceptual comparison

with a centralized database-based tracking system.

Conventional systems tend to allow for faster read

and write transactions, averaging less than one

second, because they do not require network

verification [14]. However, they have significant

drawbacks in terms of data integrity and audit

transparency. In traditional systems, administrators

with high access rights can modify or delete

shipment data, creating opportunities to manipulate

product statuses [2].

In contrast, the proposed blockchain-based system

guarantees that every successfully recorded

transaction is immutable, meaning it cannot be

changed or deleted once confirmed on the ledger.

The duplication error test, which returned the

message "Shipment already exists," demonstrated

that the smart contract effectively executed the

integrity validation mechanism automatically,

without needing third-party intervention. Although

the blockchain system may be slightly slower than a

traditional database, it provides significantly greater

data reliability, auditability, and security features

140

that are critical for an effective shipment tracking

system [15].

Security Analysis and Limitations

This system is designed with a three-layer security

principle including, On-chain security: Business

logic validation is performed directly by the smart

contract using the `require()` function. This helps

prevent duplication and unauthorized transactions.

Off-chain security: JWT (JSON Web Token)

authentication is employed to ensure that only

verified users can access administrative functions,

providing write access only to authorized personnel.

Transport security: The HTTPS protocol is used to

encrypt communications between the user interface

and the middleware server, ensuring data integrity

during transmission.

However, several security limitations have been

identified. Personal data, such as recipient names

and addresses, is stored in plain text within the

contract, making it less suitable for public

implementation. To address this, future

developments could utilize an off-chain data storage

approach, where sensitive information is stored in an

encrypted database while the blockchain retains only

hash references.

Additionally, this system currently operates on a

local Hardhat network. As such, it has not yet tested

fully decentralized security aspects, such as

Byzantine fault tolerance or defenses against Sybil

attacks, which are commonly seen on public

networks.

Pedagogical Analysis

This system marks a significant advancement in

Project-Based Learning (PBL) by featuring a three-

layer architecture: frontend, backend, and

blockchain allowing students to gain exposure to

full-stack decentralized application (dApp)

development [16],[17]. Students engage in the full

blockchain development cycle, including designing

and coding smart contracts in Solidity,

implementing middleware for API communication

using Node.js and Ethers.js, and integrating the user

interface with Vue.js to display transaction results.

This aligns with recent studies emphasizing the

importance of hands-on blockchain development in

higher education to bridge the gap between theory

and real-world implementation [18].

In lab sessions, students learn to interpret technical

data such as transaction hashes and gas

consumption, understanding the link between

contract complexity and execution costs on a

blockchain network. Previous studies indicate that

exposing learners to blockchain metrics and

transaction behaviors improves their understanding

of distributed consensus, computational cost models,

and decentralized application logic [19].

This approach aligns with current trends in

informatics education, emphasizing experiential

learning in distributed technologies. Educators can

design practical assignments, such as analyzing gas

efficiency in contract functions, modifying contracts

with additional validation, comparing performance

between local networks and public testnets, and

analyzing security implications [20].

Overall, this research showcases a technical

implementation alongside an inspiring educational

model for applied blockchain learning. It paves the

way for integration into courses on Blockchain

Technology, Software Engineering, Distributed

Systems, and other informatics programs eager to

embrace decentralized application development in

their curricula.

CONCLUSION

This research successfully designed and

implemented a blockchain-based shipment tracking

system using smart contracts on a local Ethereum

network (Hardhat Network). Test results indicate

that the system's main functions: createShipment,

updateShipmentStatus, and getShipment, operate

efficiently and reliably, with an average gas

consumption of 175,000 units and an execution time

of under two seconds per transaction.

The sequence of blocks from Block #1 to Block #5

confirms that all transactions have been validated

and permanently recorded in the blockchain,

creating an immutable ledger, with no detected

execution errors or logical anomalies.

In terms of functionality, this system illustrates how

blockchain technology can enhance transparency,

security, and data reliability in the shipment tracking

process. The contract validation mechanism, which

prevents duplicate entries, demonstrates that the

business logic functions as intended and safeguards

against data manipulation.

Furthermore, the test results show that the smart

contract design has a stable and efficient code

structure, making it a tangible example of applying

gas optimization principles in an academic context.

141

The primary contribution of this research lies in the

application of a blockchain system as a practical

learning model (academic prototype) that connects

cryptographic theory, distributed programming, and

smart contract-based application development. This

system can be utilized as an educational tool in

informatics laboratories to introduce concepts such

as decentralization, data integrity, and contract

efficiency.

Future developments could focus on testing the

system on public networks like the Goerli Testnet or

Polygon, as well as integrating it with IoT

technology to automatically record physical tracking

data. Additionally, further research could investigate

off-chain encryption models to protect sensitive data

and analyze system performance under high

transaction loads.

In summary, the developed system serves not only

as a proof-of-concept for blockchain implementation

in logistics but also as an adaptive learning platform

for students to understand modern distributed

technologies and the challenges of their real-world

applications.

REFERENCES

[1] Nakamoto S. Bitcoin: A peer-to-peer electronic

cash system. Available at SSRN 3440802. 2008

Aug 21.

http://dx.doi.org/10.2139/ssrn.3440802
[2] Kshetri N. 1 Blockchain’s roles in meeting key

supply chain management objectives.

International Journal of information

management. 2018 Apr 1;39:80-9.

https://doi.org/10.1016/j.ijinfomgt.2017.12.00

[3] Alqarni MA, Alkatheiri MS, Chauhdary SH,

Saleem S. Use of blockchain-based smart

contracts in logistics and supply chains.

Electronics. 2023 Mar 11;12(6):1340.

https://doi.org/10.3390/electronics12061340

[4] Geimer H, Vermeire P, van Ostaeyen L, Kapasi

H. Blockchain in Logistics. Article. June. 2020.

https://www.pwc.de/en/transport-und-

logistik/blockchain-in-logistics.pdf?utm

[5] Mohammad A, Vargas S. Challenges of using

blockchain in the education sector: A literature

review. Applied Sciences. 2022 Jun

23;12(13):6380.

[6] IBM & Maersk. TradeLens Platform Overview.

2019.

https://dgtr.de/wp-content/uploads/TradeLens-

Blockchain.pdf

[7] Casino F, Kanakaris V, Dasaklis TK,

Moschuris S, Stachtiaris S, Pagoni M,

Rachaniotis NP. Blockchain-based food supply

chain traceability: a case study in the dairy

sector. International journal of production

research. 2021 Oct 2;59(19):5758-70.

https://doi.org/10.1080/00207543.2020.17892

38

[8] VeChain Foundation. Web3 for Better:

Sustainable Blockchain Solutions

(Whitepaper). 2023.

 https://www.vechain.org/assets/whitepaper/

whitepaper-3-0.pdf?utm

[9] Delgado-von-Eitzen C, Anido-Rifón L,

Fernández-Iglesias MJ. Blockchain

applications in education: A systematic

literature review. Applied Sciences. 2021 Dec

12;11(24):11811.

https://doi.org/10.3390/app112411811

[10] Ullah N, Mugahed Al-Rahmi W, Alzahrani AI,

Alfarraj O, Alblehai FM. Blockchain

technology adoption in smart learning

environments. Sustainability. 2021 Feb

7;13(4):1801.

https://doi.org/10.3390/su13041801

[11] Solihin MA, Nur D, Tungadi E, Yusri IK.

Logistic supply chain management system

modeling using blockchain. Jurnal Teknologi

Elekterika. 2024 Nov 15;21(2):142-9.

https://doi.org/10.31963/elekterika.v21i2.5110

[12] Safitri W, Huda M. Adoption of Blockchain

Technology in Indonesian MSME Supply

Chain Management (SCM). Jurnal Ekonika vol.

2023;8:2.

[13] Naik PG, Naik GR. Every Stuff You Need for

Development of Decentralized App Using

Blockchain Technology:(Covers Hardhat,

React. js and Ethers. js). Shashwat Publication;

2023 Nov 20.

[14] Zheng Z, Xie S, Dai H, Chen X, Wang H. An

overview of blockchain technology:

Architecture, consensus, and future trends.

In2017 IEEE international congress on big data

(BigData congress) 2017 Jun 25 (pp. 557-564).

Ieee.

[15] Crosby M, Pattanayak P, Verma S,

Kalyanaraman V. Blockchain technology:

Beyond bitcoin. Applied innovation. 2016

Jun;2(6-10):71.

https://doi.org/10.1016/j.ijinfomgt.2017.12.005
https://doi.org/10.3390/electronics12061340
https://www.pwc.de/en/transport-und-logistik/blockchain-in-logistics.pdf?utm
https://www.pwc.de/en/transport-und-logistik/blockchain-in-logistics.pdf?utm
https://dgtr.de/wp-content/uploads/TradeLens-Blockchain.pdf
https://dgtr.de/wp-content/uploads/TradeLens-Blockchain.pdf
https://doi.org/10.1080/00207543.2020.1789238
https://doi.org/10.1080/00207543.2020.1789238
https://doi.org/10.3390/app112411811
https://doi.org/10.3390/su13041801
https://doi.org/10.31963/elekterika.v21i2.5110

142

[16] Saberi S, Kouhizadeh M, Sarkis J, Shen L.

Blockchain technology and its relationships to

sustainable supply chain management.

International journal of production research.

2019 Apr 3;57(7):2117-35.
https://doi.org/10.1080/00207543.2018.1533261

[17] Thomas JW. A review of research on project-

based learning.2000.

[18] Prince MJ, Felder RM. Inductive teaching and

learning methods: Definitions, comparisons,

and research bases. Journal of engineering

education. 2006 Apr;95(2):123-38.

https://doi.org/10.1002/j.2168-

9830.2006.tb00884.x

[19] Hapuarachchi T, Mapkar M, Rahouti M, Xiong

K. Advancing Blockchain Learning in STEM

Education Through A Comprehensive Hands-

On Educational Approach. In 2024 IEEE

Integrated STEM Education Conference

(ISEC) 2024 Mar 9 (pp. 1-6). IEEE.

[20] Steiu MF. Blockchain in education:

Opportunities, applications, and challenges.

First Monday. 2020 Aug 24.

https://doi.org/10.1080/00207543.2018.1533261
https://doi.org/10.1002/j.2168-9830.2006.tb00884.x
https://doi.org/10.1002/j.2168-9830.2006.tb00884.x

