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Abstract — To extract key information from documents, keyword extraction is often used as an automated 
process to identify the most relevant words and phrases. Models like Rapid Automatic Keyword 
Extraction (RAKE) and Yet Another Keyword Extractor (YAKE) operate based on the statistical 
properties of text without considering semantic similarity. Bidirectional Encoder Representations from 
Transformers (BERT), a bidirectional transformer model, addresses this limitation by converting phrases 
and documents into vectors that capture semantic meaning. This research tests a keyword extraction 
system on the abstract texts of Indonesian theses using the BERT model "cahya/bert-base-indonesian-
1.5G" from HuggingFace. Additionally, the study employs three similarity matrix formulas (Cosine 
Similarity, Euclidean Distance, Manhattan Distance) to measure the similarity between the text and 
candidate keywords. The results show that the YAKE model performed best overall, followed by RAKE. 
The BERT model showed lower performance, but Euclidean Distance for BERT outperformed Cosine 
Similarity and Manhattan Distance. 
 
Keywords - Keyword extraction, abstract text of Indonesian theses, RAKE, YAKE, BERT. 
 
 

INTRODUCTION 
 
Keywords are commonly used in natural language 
processing and information indexing to help in 
document understanding. The words or phrases 
generated will describe the content of the 
information contained in the text [1]. The extraction 
process is a method for obtaining important points 
from data [1]. Keyword extraction is a crucial step in 
analyzing and summarizing information from text. 
 
Models like Rapid Automatic Keyword Extraction 
(RAKE) and Yet Another Keyword Extractor 
(YAKE) are examples of models used to extract 
keywords and key phrases. However, these models 
generally work based on the statistical properties of 
the text and do not rely on semantic similarity [2]. 
To overcome this limitation, the author attempts to 
create keyword extraction using the Bidirectional 
Encoder Representations from Transformers 
(BERT) model. 
 

BERT is a bidirectional transformer model that 
allows phrases and documents to be converted into 
vectors that capture their semantic meaning [2]. The 
BERT model itself applies a limited transformer 
architecture (encoder-only) used for Natural 
Language Understanding (NLU) tasks with input in 
the form of text data and output in the form of 
vectors representing the entire input along with its 
context. The BERT model's process has two stages: 
pre-training and fine-tuning. The BERT model used 
in this study only involves the pre-training stage. The 
author uses a pre-trained BERT model to generate 
text representations in the form of matrices, which 
are the output of the pre-training stage. This study 
uses the BERT model obtained from the 
HuggingFace website with the model name 
"cahya/bert-base-indonesian-1.5G". The reason for 
using this model is that it has been pre-trained with 
522MB of Indonesian Wikipedia and 1GB of 
Indonesian news articles and is an "uncased" model, 
meaning it does not differentiate between uppercase 
and lowercase letters. 
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In developing keyword extraction with the BERT 
model, this study also employs similarity matrix 
calculations using three formulas: Cosine Similarity, 
Euclidean Distance, and Manhattan Distance. 
Cosine Similarity is a method for measuring how 
similar two vectors are in a multi-dimensional space 
[3]. Euclidean Distance is a method for measuring 
the "straight-line" distance between two points in 
Euclidean space [4]. Manhattan Distance is a method 
for measuring the distance between two points in a 
multi-dimensional space by summing the absolute 
differences of their components [5]. The purpose of 
using similarity matrix calculations is to assess the 
similarity between the text and the candidate 
keywords generated by the BERT model in the form 
of matrices. 

 
Based on this background, the author is interested in 
understanding whether keyword extraction using 
similarity matrix calculations from the BERT model 
produces better or worse keyword extraction results 
compared to the RAKE or YAKE models. 
Additionally, the study aims to understand how the 
algorithms of these three models work and the 
architecture of the transformer, which forms the 
foundation for building BERT. 
 
The evaluation results will be presented in graphical 
form to provide a better visualization of the 
performance of each model in keyword extraction. 
The evaluation is conducted using Recall values. 
Recall is used to determine the percentage of correct 
keywords produced by the model compared to the 
original keywords. Then, the average Recall will be 
calculated and presented in graphical form to 
observe the average Recall results for each model. 
 
 

METHOD 
 
This study uses abstract text data from Indonesian 
theses. The data was obtained from the website 
"repoperpus.uai.ac.id", consisting of abstract texts 
and keywords from student theses at Universitas Al-
Azhar Indonesia, spanning from 2023 to 2024. The 
abstract texts were captured using the Snipping Tool 
to convert them into images, which were then 
uploaded to Yandex to be converted into text and 
saved in a spreadsheet format. A total of 1,357 
abstract texts were used in this study. 
 
The data was processed using Google Colaboratory, 
utilizing the pandas library. The data previously 
stored in a spreadsheet format was downloaded as a 
.csv file and stored in Google Drive. 

Figure 1. Research methodology 
 

The data was then grouped based on the length of the 
keywords in the original text, and a dataframe was 
created for each group. This grouping process 
resulted in 12 groups, but only 5 groups were used 
in the study, as the number of data points in groups 
6 to 12 was very small. 

 
The data was then cleaned by converting uppercase 
letters to lowercase, removing numbers, special 
characters, and excess spaces using the regular 
expression (re) library and the Natural Language 
Toolkit (NLTK). Since the RAKE and YAKE models 
have their own data cleaning processes, the cleaning 
was not applied to these models. 
 
The data processing began by installing several 
libraries such as RAKE, YAKE, and 
sentence_transformers, as well as the BERT model 
from Hugging Face, specifically the "cahya/bert-
base-indonesian-1.5G" model. The grouped data 
was then processed using the RAKE, YAKE, and 
BERT models. 

 
For the RAKE and YAKE models, the author used 
the ParameterGrid library from Scikit-learn to 
determine the best parameter values. The selection 
of the best parameters was done by calculating the 
average Recall of the extracted keywords based on 
the original keywords. 
 
In the RAKE model, the 
generated_stopwords_percentile parameter was 
used to determine the most frequently appearing 
words in the text to be ignored based on a specified 
percentile value, where words above this percentile 
(0-100) would be considered candidates for 
stopwords. Additionally, the 
generated_stopwords_min_freq parameter 
calculated words that appeared in the text and were 
considered stopwords based on the minimum 
frequency in the distribution. 
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Figure 2. Flowchart with three BERT models 

 
For the YAKE model, the dedupLim parameter 
controlled the level of similarity considered as 
duplicates, while the windowsSize parameter set 
how many words around the keyword would be 
considered as context. Other parameters not using 
ParameterGrid were adjusted according to the needs 
of the study. 

 
In this study, the author developed three variants of 
the BERT model using similarity matrix 
calculations: Cosine Similarity, Euclidean Distance, 
and Manhattan Distance. The goal of using these 
matrix calculation methods was to measure the level 
of similarity between the candidate text and the 
abstract text. 
 
The text input consists of Indonesian abstract texts. 
The preprocessing or text cleaning process aims to 
convert all text to lowercase, remove all numbers, 
special characters, unnecessary spaces, and 
stopwords that are not needed for the analysis. The 
clean text represents the abstract text data after the 
cleaning process. In this model, the parameters 
n_gram_1 and n_gram_2 were used to determine the 
minimum and maximum keyword lengths to be 
generated and applied in the CountVectorizer 
function. 

 
CountVectorizer is a module from scikit-learn used 
to generate keyword candidates by converting the 
text into a feature matrix based on word or n-gram 
frequency. The steps of the CountVectorizer module 
include tokenization, vocabulary building, and 
feature matrix creation. Tokenization divides the text 
into smaller units called tokens, while vocabulary 
building creates a list of words or n-grams in the text 
based on the n_gram_range. After that, the feature 
matrix is created by counting the occurrences of each 
token in the text. The get_feature_names_out 
method is used to view the list of features 
(vocabulary) extracted from the text. The vocabulary 
produced by CountVectorizer is a collection of all 
unique words or n-grams found in the given text. The 
get_feature_names_out method is used to view the 
list of features (vocabulary) that have been extracted 
from the text. 

 
In the BERT model with Cosine Similarity, cosine 
similarity is used to measure the similarity between 
two vectors: the text and the candidate keywords. 
This calculation is based on the cosine angle 
between two vectors in vector space, with values 
ranging from -1 to 1, where 1 indicates perfect 
similarity. 
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The BERT model with Euclidean Distance uses 
Euclidean distance to measure the distance between 
two vectors: the text and the candidate keywords. 
The Euclidean distance is calculated as the straight-
line distance between two points in vector space, 
where the smaller the distance, the more similar the 
two vectors are. 

 
In the BERT model with Manhattan Distance, 
Manhattan distance is used to measure the distance 
between two vectors: the text and the candidate 
keywords. This calculation is based on the total 
absolute distance between the coordinates of the text 
vector and the candidate keywords, with smaller 
values indicating higher similarity. 
 
The index array of the resulting keyword embedding 
matrix was sorted from the smallest to largest value 
using the argsort function. This sorting was done to 
determine the rank of the keywords based on the 
calculated embedding values. 
 
The top_n parameter was used to obtain the top_n 
candidates with certain similarity values. In the 
Cosine Similarity calculation, keyword selection 
was based on the highest similarity value, meaning 
the smallest angle between two vectors: the 
document embedding and the candidate embedding. 
In the Euclidean Distance and Manhattan Distance 
calculations, keyword selection was based on the 
smallest similarity value, meaning the closest 
distance between two points: the document 
embedding and the candidate embedding. The 
smaller the distance, the closer and more similar the 
two points are. 
 
The evaluation process was conducted after the data 
processing with each model was completed. The 
extracted keywords from each model were combined 
according to their model to simplify the analysis. 
The evaluation aimed to calculate the average 
Recall. 

 
The evaluation process began by comparing the 
original keywords with the extracted keywords from 
each model. In the data evaluation procedure, the 
extracted keywords from each model (RAKE, 
YAKE, BERT with Cosine Similarity, Euclidean 
Distance, and Manhattan Distance) were combined 
according to the model used to facilitate the analysis 
process. Recall was calculated as the ratio between 
the number of correct or matching keywords and the 
total original keywords [1]. 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
(Model Result Keywords ∩  Original Keywords)

Total Original Keywords
         (1) 

 
The Recall value was calculated by comparing the 
number of keywords found in both sets (the model 
results and the original keywords) with the total 
original keywords. Afterward, the average Recall 
was calculated and presented in a graph to visualize 
the average Recall results of each model. 

 
 
RESULTS AND DISCUSSIONS 

 
In this study, the author conducted four tests. In the 
first test, the data processing was conducted under 
the following conditions: abstract texts were selected 
with a length ranging from 100 to 500 words, 
resulting in a total of 1,322 abstract texts. The RAKE 
and YAKE models used ParameterGrid to 
determine the best parameters. Text cleaning for the 
BERT model also included the removal of 
stopwords. This first test was divided into three 
groups based on the number of keywords used: the 
first group used 5 keywords, the second group used 
10 keywords, and the third group used 20 keywords. 

 
Table 1 and Figure 3 are showing the average Recall 
evaluation results for each model in the first test for 
the first group. 

 
Table 1. Recall from the first test in the first group 

 
RAKE 
Model 

YAKE 
Model 

BERT 
(Cosine 

Sim. Mtrx) 

BERT  
(Euclid. Dist. 

Matrix) 

BERT Model 
(Manhattan 

Dist. Matrix) 
Average 
Recall 

(%) 
26.44 33.78 12.24 13.99 13.30 

Highest 
Recall 

(%) 
100 100 100 100 100 

 

 
Figure 3. Results from first test in the first group 
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Table 2 and Figure 4 are showing the average Recall 
evaluation results for each model in the first test for 
the second group. 
 

Table 2. Recall from first test in the second group 
 

RAKE 
Model 

YAKE 
Model 

BERT 
(Cosine 

Sim. Mtrx) 

BERT  
(Euclid. Dist. 

Matrix) 

BERT Model 
(Manhattan 

Dist. Matrix) 
Average 
Recall 

(%) 
39.02 47.89 20.83 22.73 22.73 

Highest 
Recall 

(%) 
100 100 100 100 100 

 

 
Figure 4. Results from first test in the second group 

 
Table 3 and Figure 5 are showing the average Recall 
evaluation results for each model in the first test for 
the third group. 

 
Table 3. Recall from the first test in the third group 

 
RAKE 
Model 

YAKE 
Model 

BERT 
(Cosine 

Sim. Mtrx) 

BERT  
(Euclid. Dist. 

Matrix) 

BERT Model 
(Manhattan 

Dist. Matrix) 
Average 
Recall 

(%) 
46.37 60.59 34.92 37.92 36.90 

Highest 
Recall 

(%) 
100 100 100 100 100 

 

 
Figure 5. Results from first test in the third group 

 

In the second test, the data processing followed these 
rules: abstract texts were selected with a length 
ranging from 100 to 500 words, resulting in a total 
of 1,322 abstract texts. The parameters for the 
RAKE and YAKE models used default values or 
values pre-determined by the models. Text cleaning 
for the BERT model included the removal of 
stopwords. This second test was divided into three 
groups based on the number of keywords used: the 
first group used 5 keywords, the second group used 
10 keywords, and the third group used 20 keywords. 

 
Table 4 and Figure 6 are showing the average Recall 
evaluation results for each model in the second test 
for the first group. 

 
Table 4. Recall from the second test in the first group 

 
RAKE 
Model 

YAKE 
Model 

BERT 
(Cosine 

Sim. Mtrx) 

BERT  
(Euclid. Dist. 

Matrix) 

BERT Model 
(Manhattan 

Dist. Matrix) 
Average 
Recall 

(%) 
26.44 32.57 12.24 13.99 13.30 

Highest 
Recall 

(%) 
100 100 100 100 100 

 

 
Figure 6. Results from second test in the first group 

 
Table 5 and Figure 7 are showing the average Recall 
evaluation results for each model in the second test 
for the second group. 
 

Table 5. Recall from the second test in the second group. 
 

RAKE 
Model 

YAKE 
Model 

BERT 
(Cosine 

Sim. Mtrx) 

BERT  
(Euclid. Dist. 

Matrix) 

BERT Model 
(Manhattan 

Dist. Matrix) 
Average 
Recall 

(%) 
39.02 47.55 20.83 22.73 22.30 

Highest 
Recall 

(%) 
100 100 100 100 100 
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Figure 7. Results from second test in the second group 

 
Table 6 and Figure 8 are showing the average Recall 
evaluation results for each model in the second test 
for the third group. 
 

Table 6. Recall from the second test in the third group 
 

RAKE 
Model 

YAKE 
Model 

BERT 
(Cosine 

Sim. Mtrx) 

BERT  
(Euclid. Dist. 

Matrix) 

BERT Model 
(Manhattan 

Dist. Matrix) 
Average 
Recall 

(%) 
46.37 60.47 34.92 37.92 36.90 

Highest 
Recall 

(%) 
100 100 100 100 100 

 

 
Figure 8. Result from the second test in the third group 

 
In the third test, the data processing followed these 
rules: abstract texts were not selected or filtered. The 
RAKE and YAKE models used ParameterGrid to 
determine the best parameters. Text cleaning for the 
BERT model did not include the removal of 
stopwords. This third test was divided into three 
groups based on the number of keywords used: the 
first group used 5 keywords, the second group used 
10 keywords, and the third group used 20 keywords. 

 

Table 7 and Figure 9 are showing the average Recall 
evaluation results for each model in the third test for 
the first group. 

 
Table 7. Recall from the third test in the first group 

 
RAKE 
Model 

YAKE 
Model 

BERT 
(Cosine 

Sim. Mtrx) 

BERT  
(Euclid. Dist. 

Matrix) 

BERT Model 
(Manhattan 

Dist. Matrix) 
Average 
Recall 

(%) 
26.77 33.85 10.08 11.97 10.56 

Highest 
Recall 

(%) 
100 100 100 100 100 

 

 
Figure 9. Results from the third test in the first group 

 
Table 8 and Figure 10 are showing the average 
Recall evaluation results for each model in the third 
test for the second group. 
 

Table 8. Recall from the third test in the second group 
 

RAKE 
Model 

YAKE 
Model 

BERT 
(Cosine 

Sim. Mtrx) 

BERT  
(Euclid. Dist. 

Matrix) 

BERT Model 
(Manhattan 

Dist. Matrix) 
Average 
Recall 

(%) 
39.18 48.15 17.03 20.43 19.20 

Highest 
Recall 

(%) 
100 100 100 100 100 

 

 
Figure 10. Results from the third test in the second group 
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Table 9 and Figure 11 are showing the average 
Recall evaluation results for each model in the third 
test for the third group. 

 
Table 9. Recall results from the third test in the third group 

 
RAKE 
Model 

YAKE 
Model 

BERT 
(Cosine 

Sim. Mtrx) 

BERT  
(Euclid. Dist. 

Matrix) 

BERT Model 
(Manhattan 

Dist. Matrix) 
Average 
Recall 

(%) 
46.38 60.91 29.03 33.99 32.59 

Highest 
Recall 

(%) 
100 100 100 100 100 

 

 
Figure 11. Recall from the third test in the third group 

 
In the fourth test, the data processing followed these 
rules: abstract texts were not selected or filtered. The 
parameters for the RAKE and YAKE models used 
default values or values pre-determined by the 
models. Text cleaning for the BERT model did not 
include the removal of stopwords. This fourth test 
was divided into three groups based on the number 
of keywords used: the first group used 5 keywords, 
the second group used 10 keywords, and the third 
group used 20 keywords. 

 
Table 10 and Figure 12 are showing the average 
Recall evaluation results for each model in the fourth 
test for the first group. 
 
Table 11 and Figure 13 are showing the average 
Recall evaluation results for each model in the fourth 
test for the second group. 
 

Table 10. Recall from the fourth test in the first group 
 

RAKE 
Model 

YAKE 
Model 

BERT 
(Cosine 

Sim. Mtrx) 

BERT  
(Euclid. Dist. 

Matrix) 

BERT Model 
(Manhattan 

Dist. Matrix) 
Average 
Recall 

(%) 
26.77 32.70 10.08 11.97 10.56 

Highest 
Recall 

(%) 
100 100 100 100 100 

 

 
Figure 12. Recall from the fourth test in the first group 

 
Table 11. Recall from the fourth test in the second group 

 RAKE 
Model 

YAKE 
Model 

BERT 
(Cosine 

Sim. Mtrx) 

BERT  
(Euclid. Dist. 

Matrix) 

BERT Model 
(Manhattan 

Dist. Matrix) 
Average 
Recall 

(%) 
39.18 47.77 17.03 20.43 19.20 

Highest 
Recall 

(%) 
100 100 100 100 100 

 

 
Figure 13. Results from the fourth test in the second group 

 
Table 12 and Figure 14 are showing the average 
Recall evaluation results for each model in the fourth 
test for the third group. 
 
Table 12. Recall results from the fourth test in the third group 

 
RAKE 
Model 

YAKE 
Model 

BERT 
(Cosine 

Sim. Mtrx) 

BERT  
(Euclid. Dist. 

Matrix) 

BERT Model 
(Manhattan 

Dist. Matrix) 
Average 
Recall 

(%) 
46.38 60.73 29.03 33.99 32.59 

Highest 
Recall 

(%) 
100 100 100 100 100 
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Figure 14. Results from the fourth test in the third group 

 
 
The use of the ParameterGrid module to find the 
best parameters in the YAKE model showed a slight 
improvement in the average Recall value compared 
to using default values or values pre-determined by 
the model. However, this improvement was not seen 
in the RAKE model, where no significant changes in 
the average Recall value were observed. This 
indicates that parameter adjustment using 
ParameterGrid in the YAKE model can improve 
performance, although the improvement is not 
significant. Parameter optimization helped the 
YAKE model better adapt to the characteristics of 
the tested data, resulting in more accurate 
performance. For example, in the first test of the 
third group, the average Recall value for the YAKE 
model was 60.59, slightly higher than in the second 
test of the third group, where the Recall value for the 
YAKE model was 60.47 without using 
ParameterGrid. 

 
The selection of abstract texts with a length between 
100 and 500 words showed a slight increase in the 
average Recall for both the RAKE and YAKE 
models. However, for the BERT model with various 
similarity metrics, the average Recall slightly 
decreased. This was due to differences in the amount 
of data used, where before selection, the data totaled 
1,364, but after selection, the data was reduced to 
1,322. For example, in the second test of the first 
group, the average Recall value for the RAKE model 
was 26.44, slightly higher than in the fourth test of 
the first group, where the RAKE model achieved a 
Recall value of 26.77 without data selection. 

 
From the test results, it can be concluded that 
increasing the number of keywords consistently 
results in higher Recall for all models. This indicates 
that using more keywords can help capture more 
relevant information from the document. 

 
The addition of more keywords allows the model to 
have a broader coverage in information extraction, 
reducing the chances of missing important 
information. For example, in the second test of the 
first group with 5 keywords, the Recall value for the 
YAKE model was 32.57. In the second test of the 
second group with 10 keywords, the Recall value for 
the YAKE model increased to 47.55. In the second 
test of the third group with 20 keywords, the Recall 
value for the YAKE model reached 60.47. The 
increase in the number of keywords consistently 
raised the average Recall value. 
 
Adding a stopwords cleaning process for the BERT 
model with various similarity metrics resulted in a 
higher average Recall compared to without 
stopwords cleaning. Cleaning stopwords helped 
reduce noise in the text data, allowing the model to 
focus on more meaningful and relevant words. This 
shows that removing stopwords is an important step 
in text preprocessing to improve the performance of 
the BERT model in keyword extraction. For 
example, in the second test of the first group, the 
Recall value for the BERT model with Cosine 
Similarity was 12.24, slightly higher than the Recall 
value in the fourth test of the first group for the 
BERT model with Cosine Similarity, which was 
10.08 without text cleaning. 
 
 

CONCLUSION 
 
The YAKE model proved to be the best overall 
model, with a high average Recall in every test. This 
shows that YAKE is the most reliable model for 
keyword identification. The RAKE model also 
showed good performance with relatively high 
average Recall in each test, indicating that RAKE 
can perform well under certain conditions. 

 
Meanwhile, the BERT model with various metrics 
(Cosine Similarity, Euclidean Distance, Manhattan 
Distance) did not show satisfactory results in each 
test. The proposed development process involved 
two main stages, namely the candidate keyword 
extraction process using the CountVectorizer module 
and the embedding process with BERT, but the 
results showed overall lower performance. It is 
possible that the CountVectorizer module used for 
candidate keyword extraction caused the unexpected 
performance. Nonetheless, the BERT model with 
Euclidean Distance showed a slight advantage over 
Cosine Similarity and Manhattan Distance in each 
test.  
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