
Exhibition and Seminar on Science and Creative Technology, University of Al-Azhar Indonesia (EXSACT-A
2024) Proceeding

75

DOI: http://dx.doi.org/10.36722/exc.v2i1.3378

Development of a Keyword Extractor Using the
Bidirectional Encoder Representations from Transformers

(BERT) Model

Muhammad Mubarok Azzam1, Ade Jamal1

1Department of Informatics, Faculty of Science and Technology, Universitas Al Azhar Indonesia,

Sisingamangaraja, South Jakarta, 12110

Corresponding author/E-mail: mmazzam4@gmail.com

Abstract — To extract key information from documents, keyword extraction is often used as an automated
process to identify the most relevant words and phrases. Models like Rapid Automatic Keyword
Extraction (RAKE) and Yet Another Keyword Extractor (YAKE) operate based on the statistical
properties of text without considering semantic similarity. Bidirectional Encoder Representations from
Transformers (BERT), a bidirectional transformer model, addresses this limitation by converting phrases
and documents into vectors that capture semantic meaning. This research tests a keyword extraction
system on the abstract texts of Indonesian theses using the BERT model "cahya/bert-base-indonesian-
1.5G" from HuggingFace. Additionally, the study employs three similarity matrix formulas (Cosine
Similarity, Euclidean Distance, Manhattan Distance) to measure the similarity between the text and
candidate keywords. The results show that the YAKE model performed best overall, followed by RAKE.
The BERT model showed lower performance, but Euclidean Distance for BERT outperformed Cosine
Similarity and Manhattan Distance.

Keywords - Keyword extraction, abstract text of Indonesian theses, RAKE, YAKE, BERT.

INTRODUCTION

Keywords are commonly used in natural language
processing and information indexing to help in
document understanding. The words or phrases
generated will describe the content of the
information contained in the text [1]. The extraction
process is a method for obtaining important points
from data [1]. Keyword extraction is a crucial step in
analyzing and summarizing information from text.

Models like Rapid Automatic Keyword Extraction
(RAKE) and Yet Another Keyword Extractor
(YAKE) are examples of models used to extract
keywords and key phrases. However, these models
generally work based on the statistical properties of
the text and do not rely on semantic similarity [2].
To overcome this limitation, the author attempts to
create keyword extraction using the Bidirectional
Encoder Representations from Transformers
(BERT) model.

BERT is a bidirectional transformer model that
allows phrases and documents to be converted into
vectors that capture their semantic meaning [2]. The
BERT model itself applies a limited transformer
architecture (encoder-only) used for Natural
Language Understanding (NLU) tasks with input in
the form of text data and output in the form of
vectors representing the entire input along with its
context. The BERT model's process has two stages:
pre-training and fine-tuning. The BERT model used
in this study only involves the pre-training stage. The
author uses a pre-trained BERT model to generate
text representations in the form of matrices, which
are the output of the pre-training stage. This study
uses the BERT model obtained from the
HuggingFace website with the model name
"cahya/bert-base-indonesian-1.5G". The reason for
using this model is that it has been pre-trained with
522MB of Indonesian Wikipedia and 1GB of
Indonesian news articles and is an "uncased" model,
meaning it does not differentiate between uppercase
and lowercase letters.

http://dx.doi.org/10.36722/exc.v2i1.3378
mailto:mmazzam4@gmail.com

Exhibition and Seminar on Science and Creative Technology, University of Al-Azhar Indonesia (EXSACT-A
2024) Proceeding

76

In developing keyword extraction with the BERT
model, this study also employs similarity matrix
calculations using three formulas: Cosine Similarity,
Euclidean Distance, and Manhattan Distance.
Cosine Similarity is a method for measuring how
similar two vectors are in a multi-dimensional space
[3]. Euclidean Distance is a method for measuring
the "straight-line" distance between two points in
Euclidean space [4]. Manhattan Distance is a method
for measuring the distance between two points in a
multi-dimensional space by summing the absolute
differences of their components [5]. The purpose of
using similarity matrix calculations is to assess the
similarity between the text and the candidate
keywords generated by the BERT model in the form
of matrices.

Based on this background, the author is interested in
understanding whether keyword extraction using
similarity matrix calculations from the BERT model
produces better or worse keyword extraction results
compared to the RAKE or YAKE models.
Additionally, the study aims to understand how the
algorithms of these three models work and the
architecture of the transformer, which forms the
foundation for building BERT.

The evaluation results will be presented in graphical
form to provide a better visualization of the
performance of each model in keyword extraction.
The evaluation is conducted using Recall values.
Recall is used to determine the percentage of correct
keywords produced by the model compared to the
original keywords. Then, the average Recall will be
calculated and presented in graphical form to
observe the average Recall results for each model.

METHOD

This study uses abstract text data from Indonesian
theses. The data was obtained from the website
"repoperpus.uai.ac.id", consisting of abstract texts
and keywords from student theses at Universitas Al-
Azhar Indonesia, spanning from 2023 to 2024. The
abstract texts were captured using the Snipping Tool
to convert them into images, which were then
uploaded to Yandex to be converted into text and
saved in a spreadsheet format. A total of 1,357
abstract texts were used in this study.

The data was processed using Google Colaboratory,
utilizing the pandas library. The data previously
stored in a spreadsheet format was downloaded as a
.csv file and stored in Google Drive.

Figure 1. Research methodology

The data was then grouped based on the length of the
keywords in the original text, and a dataframe was
created for each group. This grouping process
resulted in 12 groups, but only 5 groups were used
in the study, as the number of data points in groups
6 to 12 was very small.

The data was then cleaned by converting uppercase
letters to lowercase, removing numbers, special
characters, and excess spaces using the regular
expression (re) library and the Natural Language
Toolkit (NLTK). Since the RAKE and YAKE models
have their own data cleaning processes, the cleaning
was not applied to these models.

The data processing began by installing several
libraries such as RAKE, YAKE, and
sentence_transformers, as well as the BERT model
from Hugging Face, specifically the "cahya/bert-
base-indonesian-1.5G" model. The grouped data
was then processed using the RAKE, YAKE, and
BERT models.

For the RAKE and YAKE models, the author used
the ParameterGrid library from Scikit-learn to
determine the best parameter values. The selection
of the best parameters was done by calculating the
average Recall of the extracted keywords based on
the original keywords.

In the RAKE model, the
generated_stopwords_percentile parameter was
used to determine the most frequently appearing
words in the text to be ignored based on a specified
percentile value, where words above this percentile
(0-100) would be considered candidates for
stopwords. Additionally, the
generated_stopwords_min_freq parameter
calculated words that appeared in the text and were
considered stopwords based on the minimum
frequency in the distribution.

Exhibition and Seminar on Science and Creative Technology, University of Al-Azhar Indonesia (EXSACT-A
2024) Proceeding

77

Figure 2. Flowchart with three BERT models

For the YAKE model, the dedupLim parameter
controlled the level of similarity considered as
duplicates, while the windowsSize parameter set
how many words around the keyword would be
considered as context. Other parameters not using
ParameterGrid were adjusted according to the needs
of the study.

In this study, the author developed three variants of
the BERT model using similarity matrix
calculations: Cosine Similarity, Euclidean Distance,
and Manhattan Distance. The goal of using these
matrix calculation methods was to measure the level
of similarity between the candidate text and the
abstract text.

The text input consists of Indonesian abstract texts.
The preprocessing or text cleaning process aims to
convert all text to lowercase, remove all numbers,
special characters, unnecessary spaces, and
stopwords that are not needed for the analysis. The
clean text represents the abstract text data after the
cleaning process. In this model, the parameters
n_gram_1 and n_gram_2 were used to determine the
minimum and maximum keyword lengths to be
generated and applied in the CountVectorizer
function.

CountVectorizer is a module from scikit-learn used
to generate keyword candidates by converting the
text into a feature matrix based on word or n-gram
frequency. The steps of the CountVectorizer module
include tokenization, vocabulary building, and
feature matrix creation. Tokenization divides the text
into smaller units called tokens, while vocabulary
building creates a list of words or n-grams in the text
based on the n_gram_range. After that, the feature
matrix is created by counting the occurrences of each
token in the text. The get_feature_names_out
method is used to view the list of features
(vocabulary) extracted from the text. The vocabulary
produced by CountVectorizer is a collection of all
unique words or n-grams found in the given text. The
get_feature_names_out method is used to view the
list of features (vocabulary) that have been extracted
from the text.

In the BERT model with Cosine Similarity, cosine
similarity is used to measure the similarity between
two vectors: the text and the candidate keywords.
This calculation is based on the cosine angle
between two vectors in vector space, with values
ranging from -1 to 1, where 1 indicates perfect
similarity.

Exhibition and Seminar on Science and Creative Technology, University of Al-Azhar Indonesia (EXSACT-A
2024) Proceeding

78

The BERT model with Euclidean Distance uses
Euclidean distance to measure the distance between
two vectors: the text and the candidate keywords.
The Euclidean distance is calculated as the straight-
line distance between two points in vector space,
where the smaller the distance, the more similar the
two vectors are.

In the BERT model with Manhattan Distance,
Manhattan distance is used to measure the distance
between two vectors: the text and the candidate
keywords. This calculation is based on the total
absolute distance between the coordinates of the text
vector and the candidate keywords, with smaller
values indicating higher similarity.

The index array of the resulting keyword embedding
matrix was sorted from the smallest to largest value
using the argsort function. This sorting was done to
determine the rank of the keywords based on the
calculated embedding values.

The top_n parameter was used to obtain the top_n
candidates with certain similarity values. In the
Cosine Similarity calculation, keyword selection
was based on the highest similarity value, meaning
the smallest angle between two vectors: the
document embedding and the candidate embedding.
In the Euclidean Distance and Manhattan Distance
calculations, keyword selection was based on the
smallest similarity value, meaning the closest
distance between two points: the document
embedding and the candidate embedding. The
smaller the distance, the closer and more similar the
two points are.

The evaluation process was conducted after the data
processing with each model was completed. The
extracted keywords from each model were combined
according to their model to simplify the analysis.
The evaluation aimed to calculate the average
Recall.

The evaluation process began by comparing the
original keywords with the extracted keywords from
each model. In the data evaluation procedure, the
extracted keywords from each model (RAKE,
YAKE, BERT with Cosine Similarity, Euclidean
Distance, and Manhattan Distance) were combined
according to the model used to facilitate the analysis
process. Recall was calculated as the ratio between
the number of correct or matching keywords and the
total original keywords [1].

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
(Model Result Keywords ∩ Original Keywords)

Total Original Keywords
 (1)

The Recall value was calculated by comparing the
number of keywords found in both sets (the model
results and the original keywords) with the total
original keywords. Afterward, the average Recall
was calculated and presented in a graph to visualize
the average Recall results of each model.

RESULTS AND DISCUSSIONS

In this study, the author conducted four tests. In the
first test, the data processing was conducted under
the following conditions: abstract texts were selected
with a length ranging from 100 to 500 words,
resulting in a total of 1,322 abstract texts. The RAKE
and YAKE models used ParameterGrid to
determine the best parameters. Text cleaning for the
BERT model also included the removal of
stopwords. This first test was divided into three
groups based on the number of keywords used: the
first group used 5 keywords, the second group used
10 keywords, and the third group used 20 keywords.

Table 1 and Figure 3 are showing the average Recall
evaluation results for each model in the first test for
the first group.

Table 1. Recall from the first test in the first group

RAKE
Model

YAKE
Model

BERT
(Cosine

Sim. Mtrx)

BERT
(Euclid. Dist.

Matrix)

BERT Model
(Manhattan

Dist. Matrix)
Average
Recall

(%)
26.44 33.78 12.24 13.99 13.30

Highest
Recall

(%)
100 100 100 100 100

Figure 3. Results from first test in the first group

Exhibition and Seminar on Science and Creative Technology, University of Al-Azhar Indonesia (EXSACT-A
2024) Proceeding

79

Table 2 and Figure 4 are showing the average Recall
evaluation results for each model in the first test for
the second group.

Table 2. Recall from first test in the second group

RAKE
Model

YAKE
Model

BERT
(Cosine

Sim. Mtrx)

BERT
(Euclid. Dist.

Matrix)

BERT Model
(Manhattan

Dist. Matrix)
Average
Recall

(%)
39.02 47.89 20.83 22.73 22.73

Highest
Recall

(%)
100 100 100 100 100

Figure 4. Results from first test in the second group

Table 3 and Figure 5 are showing the average Recall
evaluation results for each model in the first test for
the third group.

Table 3. Recall from the first test in the third group

RAKE
Model

YAKE
Model

BERT
(Cosine

Sim. Mtrx)

BERT
(Euclid. Dist.

Matrix)

BERT Model
(Manhattan

Dist. Matrix)
Average
Recall

(%)
46.37 60.59 34.92 37.92 36.90

Highest
Recall

(%)
100 100 100 100 100

Figure 5. Results from first test in the third group

In the second test, the data processing followed these
rules: abstract texts were selected with a length
ranging from 100 to 500 words, resulting in a total
of 1,322 abstract texts. The parameters for the
RAKE and YAKE models used default values or
values pre-determined by the models. Text cleaning
for the BERT model included the removal of
stopwords. This second test was divided into three
groups based on the number of keywords used: the
first group used 5 keywords, the second group used
10 keywords, and the third group used 20 keywords.

Table 4 and Figure 6 are showing the average Recall
evaluation results for each model in the second test
for the first group.

Table 4. Recall from the second test in the first group

RAKE
Model

YAKE
Model

BERT
(Cosine

Sim. Mtrx)

BERT
(Euclid. Dist.

Matrix)

BERT Model
(Manhattan

Dist. Matrix)
Average
Recall

(%)
26.44 32.57 12.24 13.99 13.30

Highest
Recall

(%)
100 100 100 100 100

Figure 6. Results from second test in the first group

Table 5 and Figure 7 are showing the average Recall
evaluation results for each model in the second test
for the second group.

Table 5. Recall from the second test in the second group.

RAKE
Model

YAKE
Model

BERT
(Cosine

Sim. Mtrx)

BERT
(Euclid. Dist.

Matrix)

BERT Model
(Manhattan

Dist. Matrix)
Average
Recall

(%)
39.02 47.55 20.83 22.73 22.30

Highest
Recall

(%)
100 100 100 100 100

Exhibition and Seminar on Science and Creative Technology, University of Al-Azhar Indonesia (EXSACT-A
2024) Proceeding

80

Figure 7. Results from second test in the second group

Table 6 and Figure 8 are showing the average Recall
evaluation results for each model in the second test
for the third group.

Table 6. Recall from the second test in the third group

RAKE
Model

YAKE
Model

BERT
(Cosine

Sim. Mtrx)

BERT
(Euclid. Dist.

Matrix)

BERT Model
(Manhattan

Dist. Matrix)
Average
Recall

(%)
46.37 60.47 34.92 37.92 36.90

Highest
Recall

(%)
100 100 100 100 100

Figure 8. Result from the second test in the third group

In the third test, the data processing followed these
rules: abstract texts were not selected or filtered. The
RAKE and YAKE models used ParameterGrid to
determine the best parameters. Text cleaning for the
BERT model did not include the removal of
stopwords. This third test was divided into three
groups based on the number of keywords used: the
first group used 5 keywords, the second group used
10 keywords, and the third group used 20 keywords.

Table 7 and Figure 9 are showing the average Recall
evaluation results for each model in the third test for
the first group.

Table 7. Recall from the third test in the first group

RAKE
Model

YAKE
Model

BERT
(Cosine

Sim. Mtrx)

BERT
(Euclid. Dist.

Matrix)

BERT Model
(Manhattan

Dist. Matrix)
Average
Recall

(%)
26.77 33.85 10.08 11.97 10.56

Highest
Recall

(%)
100 100 100 100 100

Figure 9. Results from the third test in the first group

Table 8 and Figure 10 are showing the average
Recall evaluation results for each model in the third
test for the second group.

Table 8. Recall from the third test in the second group

RAKE
Model

YAKE
Model

BERT
(Cosine

Sim. Mtrx)

BERT
(Euclid. Dist.

Matrix)

BERT Model
(Manhattan

Dist. Matrix)
Average
Recall

(%)
39.18 48.15 17.03 20.43 19.20

Highest
Recall

(%)
100 100 100 100 100

Figure 10. Results from the third test in the second group

Exhibition and Seminar on Science and Creative Technology, University of Al-Azhar Indonesia (EXSACT-A
2024) Proceeding

81

Table 9 and Figure 11 are showing the average
Recall evaluation results for each model in the third
test for the third group.

Table 9. Recall results from the third test in the third group

RAKE
Model

YAKE
Model

BERT
(Cosine

Sim. Mtrx)

BERT
(Euclid. Dist.

Matrix)

BERT Model
(Manhattan

Dist. Matrix)
Average
Recall

(%)
46.38 60.91 29.03 33.99 32.59

Highest
Recall

(%)
100 100 100 100 100

Figure 11. Recall from the third test in the third group

In the fourth test, the data processing followed these
rules: abstract texts were not selected or filtered. The
parameters for the RAKE and YAKE models used
default values or values pre-determined by the
models. Text cleaning for the BERT model did not
include the removal of stopwords. This fourth test
was divided into three groups based on the number
of keywords used: the first group used 5 keywords,
the second group used 10 keywords, and the third
group used 20 keywords.

Table 10 and Figure 12 are showing the average
Recall evaluation results for each model in the fourth
test for the first group.

Table 11 and Figure 13 are showing the average
Recall evaluation results for each model in the fourth
test for the second group.

Table 10. Recall from the fourth test in the first group

RAKE
Model

YAKE
Model

BERT
(Cosine

Sim. Mtrx)

BERT
(Euclid. Dist.

Matrix)

BERT Model
(Manhattan

Dist. Matrix)
Average
Recall

(%)
26.77 32.70 10.08 11.97 10.56

Highest
Recall

(%)
100 100 100 100 100

Figure 12. Recall from the fourth test in the first group

Table 11. Recall from the fourth test in the second group

 RAKE
Model

YAKE
Model

BERT
(Cosine

Sim. Mtrx)

BERT
(Euclid. Dist.

Matrix)

BERT Model
(Manhattan

Dist. Matrix)
Average
Recall

(%)
39.18 47.77 17.03 20.43 19.20

Highest
Recall

(%)
100 100 100 100 100

Figure 13. Results from the fourth test in the second group

Table 12 and Figure 14 are showing the average
Recall evaluation results for each model in the fourth
test for the third group.

Table 12. Recall results from the fourth test in the third group

RAKE
Model

YAKE
Model

BERT
(Cosine

Sim. Mtrx)

BERT
(Euclid. Dist.

Matrix)

BERT Model
(Manhattan

Dist. Matrix)
Average
Recall

(%)
46.38 60.73 29.03 33.99 32.59

Highest
Recall

(%)
100 100 100 100 100

Exhibition and Seminar on Science and Creative Technology, University of Al-Azhar Indonesia (EXSACT-A
2024) Proceeding

82

Figure 14. Results from the fourth test in the third group

The use of the ParameterGrid module to find the
best parameters in the YAKE model showed a slight
improvement in the average Recall value compared
to using default values or values pre-determined by
the model. However, this improvement was not seen
in the RAKE model, where no significant changes in
the average Recall value were observed. This
indicates that parameter adjustment using
ParameterGrid in the YAKE model can improve
performance, although the improvement is not
significant. Parameter optimization helped the
YAKE model better adapt to the characteristics of
the tested data, resulting in more accurate
performance. For example, in the first test of the
third group, the average Recall value for the YAKE
model was 60.59, slightly higher than in the second
test of the third group, where the Recall value for the
YAKE model was 60.47 without using
ParameterGrid.

The selection of abstract texts with a length between
100 and 500 words showed a slight increase in the
average Recall for both the RAKE and YAKE
models. However, for the BERT model with various
similarity metrics, the average Recall slightly
decreased. This was due to differences in the amount
of data used, where before selection, the data totaled
1,364, but after selection, the data was reduced to
1,322. For example, in the second test of the first
group, the average Recall value for the RAKE model
was 26.44, slightly higher than in the fourth test of
the first group, where the RAKE model achieved a
Recall value of 26.77 without data selection.

From the test results, it can be concluded that
increasing the number of keywords consistently
results in higher Recall for all models. This indicates
that using more keywords can help capture more
relevant information from the document.

The addition of more keywords allows the model to
have a broader coverage in information extraction,
reducing the chances of missing important
information. For example, in the second test of the
first group with 5 keywords, the Recall value for the
YAKE model was 32.57. In the second test of the
second group with 10 keywords, the Recall value for
the YAKE model increased to 47.55. In the second
test of the third group with 20 keywords, the Recall
value for the YAKE model reached 60.47. The
increase in the number of keywords consistently
raised the average Recall value.

Adding a stopwords cleaning process for the BERT
model with various similarity metrics resulted in a
higher average Recall compared to without
stopwords cleaning. Cleaning stopwords helped
reduce noise in the text data, allowing the model to
focus on more meaningful and relevant words. This
shows that removing stopwords is an important step
in text preprocessing to improve the performance of
the BERT model in keyword extraction. For
example, in the second test of the first group, the
Recall value for the BERT model with Cosine
Similarity was 12.24, slightly higher than the Recall
value in the fourth test of the first group for the
BERT model with Cosine Similarity, which was
10.08 without text cleaning.

CONCLUSION

The YAKE model proved to be the best overall
model, with a high average Recall in every test. This
shows that YAKE is the most reliable model for
keyword identification. The RAKE model also
showed good performance with relatively high
average Recall in each test, indicating that RAKE
can perform well under certain conditions.

Meanwhile, the BERT model with various metrics
(Cosine Similarity, Euclidean Distance, Manhattan
Distance) did not show satisfactory results in each
test. The proposed development process involved
two main stages, namely the candidate keyword
extraction process using the CountVectorizer module
and the embedding process with BERT, but the
results showed overall lower performance. It is
possible that the CountVectorizer module used for
candidate keyword extraction caused the unexpected
performance. Nonetheless, the BERT model with
Euclidean Distance showed a slight advantage over
Cosine Similarity and Manhattan Distance in each
test.

Exhibition and Seminar on Science and Creative Technology, University of Al-Azhar Indonesia (EXSACT-A
2024) Proceeding

83

REFERENCES

[1] M. A. Shiddiq. Ekstraksi kata kunci pada

artikel menggunakan metode TextRank S,
UIN Malang. 2019.

[2] M. Grootendorst. Keyword extraction with
BERT. Maartengrootendorst. 2020.
https://www.maartengrootendorst.com/blog/k
eybert. (Diakses pada 10 Juli 2024).

[3] C. D. Manning, P. Raghavan & H. Schütze.
An introduction to information retrieval.
Cambridge University. 2009.

[4] P. Barret. Euclidean distance: Raw,
normalized, and double‐scaled coefficients.
PBarret.net. 2005.

[5] H. S. Ranjitkar & S. Karki. Comparison of A*,
Euclidean and Manhattan distance using
Influence Map in Ms. Pac-Man. 2016.

[6] Y. Matsuo & M. Ishizuka. Keyword extraction
from a single document using word co-
occurrence statistical information. Int. J. Artif,
Vol. 13, no. 1, pp. 157-169. 2004.

[7] R. Mihalcea & P. Tarau. TextRank: Bringing
Order into Text. Conference on Empirical
Methods in Natural Language Processing,
Barcelona, Spain, pp. 404-411. 2004.

[8] A. Jain, G. Kulkarni, & V. Shah. Natural
language processing. International Journal of
Computer Sciences and Engineering, Vol. 6,
No. 1, pp. 161-167. 2018.

[9] M. Emms & S. Luz. Machine Learning for
Natural Language Processing. ESSLLI 2007
Course Reader. 2007.

[10] M.V. Koroteev. BERT: A Review of
Applications in Natural Language Processing
and Understanding. 2021. arXiv:2103.11943

[11] S. Islam, H. Elmekki, A. Elsebai, J. Bentahar,
N. Drawel, G. Rjoub & W. Pedrycz. A
Comprehensive Survey on Applications of
Transformers for Deep Learning Tasks.
Expert Systems with Applications, Vol. 241,
No. 122666. 2023.

[12] J. Devlin, M. Chang, K. Lee, & K. Toutanova.
BERT: Pretraining of Deep Bidirectional
Transformers for Language Understanding.
North American Chapter of the Association
for Computational Linguistics. pp. 4171–
4186. 2019.

[13] A. Vaswani, N. Shazeer, N. Parmar, J.
Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser
& I. Polosukhin. Attention is All you Need.
Neural Information Processing Systems.
2017.

[14] M. H. Sazli. A brief review of feed-forward
neural networks.
Commun.Fac.Sci.Univ.Ank.Series A2-A3:
Phys.Sci. and Eng, Vol. 50, No. 01. 2006.

[15] D. Park & C. W. Ahn. Self-Supervised
Contextual Data Augmentation for Natural
Language Processing. Symmetry, Vol. 11, No.
11, pp. 1393. 2019.

[16] A. Mittal & A. Modi. ReCAM@IITK at
SemEval-2021 Task 4: BERT and ALBERT
based Ensemble for Abstract Word Prediction.
International Workshop on Semantic
Evaluation (SemEval2021), Online. 2021.

[17] T. Setyorini. e-Modul matematika kelas XI:
Matriks. Repositori Institusi Kementrian
Pendidikan, Kebudayaan, Riset, dan
Teknologi. 2019.

[18] H. M. Abdallah, A.Taha & M. M. Selim.
Cloud-Based Fuzzy Keyword Search Scheme
Over Encrypted Documents. Int. J.
Sociotechnology Knowl, Vol. 13, No. 4, pp.
82-100. 2021.

[19] R. Campos, V. Mangaravite, A. Pasquali, A.
M. Jorge, C. Nunes & A. Jatowt. A Text
Feature Based Automatic Keyword Extraction
Method for Single Documents. European
Conference on Information Retrieval (ECIR),
zrenoble, France. 2018.

[20] M. Chaudhary. TF-IDF vectorizer scikit-
learn. Medium. 2020.
https://medium.com/@cmukesh8688/tf-idf-
vectorizerscikit-learn-dbc0244a911a.
(Diakses pada 11 Juli 2024).

[21] J. Alammar. The illustrated transformer.
Jalammar.github.io. 2018.
https://jalammar.github.io/illustrated-
transformer. (Diakses pada 11 Juli 2024).

https://www.maartengrootendorst.com/blog/keybert
https://www.maartengrootendorst.com/blog/keybert
https://medium.com/@cmukesh8688/tf-idf-vectorizerscikit-learn-dbc0244a911a
https://medium.com/@cmukesh8688/tf-idf-vectorizerscikit-learn-dbc0244a911a
https://jalammar.github.io/illustrated-transformer
https://jalammar.github.io/illustrated-transformer

